
11
Policy Gradients

In this lecture, we will continue to consider the problem of directly learning
a policy including from sampled trajectories. We will focus on policy gra-
dient methods that use samples from the environment to get noisy gradient
estimates and then update policy. Policy gradient methods take advantage
of one important structure black box methods do not: the fact that we can
design our policy space such that we know the relationship between the
parameters of that policy space and the output actions. That is, the policy
search problem need not be entirely a black-box operation since even without
a model of the environment or cost functions as we still can have a model of
how our policy space works. 1 1 At least one of the authors, based on

disappointing experimental evidence,
had largely despaired of this advan-
tage translating into a reduction in the
amount of interaction required over
naive blackbox methods “A major
open issue within the field is the rela-
tive merits of the these two approaches:
in principle, white box methods lever-
age more information, but with the
exception of models, the performance
gains are traded-off with additional
assumptions that may be violated and
less mature optimization algorithms.
Some recent work ... suggest that
much of the benefit of policy search
is achieved by black-box methods.”
(Kober, Peters, Bagnell, 14). In recent
years, as policy classes have become
more sophisticated (i.e. deep CNN
based policies) with very large param-
eter sets, the benefit of this additional
structure has become important and the
methods described in this chapter have
at times become preferred to black box
search.

To take advantage of this approach, we need a method to relate the pa-
rameters of the policy class with the resulting actions. One of the simplest
methods to do so is computing derivatives: for sophisticated policy classes
this is often best done through automatic differentiation techniques. We
begin here by reviewing the most common automatic differentiation tech-
nique used in the learning literature commonly known as backpropagation
or reverse-mode automatic differentiation.

We demonstrate how to use this in a larger loop of policy optimization
later in the lecture. Before specifying the details of this approach, we will
review back-propagation and its use in neural networks and controls.

11.1 Back-propagation

A powerful way to describe many complex systems is as a composition of
interconnected modules described as a directed graph2. This makes it easier

2 Often called the computation graph in
the learning literature

to organize a complex system and debug the system by unit testing individ-
ual components. For example, robotics often leverages a “sense, act, plan”
paradigm, where each component is often studied and optimized separately.
However, modifying a single module can influence the overall system per-
formance in a complicated way due to the relationship between modules.
Back-propagation attempts to address this problem by offering a principled
method to calculate the cascaded effects of module parameters on overall
system performance. Back-propagation is also known as the adjoint method
and reverse-mode automatic differentiation in the control and optimization litera-
ture.

Back-propagation makes it possible to solve a large class of problems
that would be intractable using naive differentiation techniques or the use of

120 draft: modern adaptive control and reinforcement learning

forward mode auto-differentiation. One of the best known applications is train-
ing neural networks, which has led to dramatic results in computer vision
and natural language processing. 3 A common misunderstanding is that 3

back-propagation is specific to machine learning/neural network (aka deep
network) training. In fact, back-propagation can be used to compute gradients
for any differentiable function expressed as a graph of operations and this
general dynamic programming strategy for computing derivatives is quite
old. In particular, the same idea has been used widely in optimal control,
known as the adjoint method4. Just as back-propagation’s led to tremendous 4 A fine summary of the adjoint method

can be found here: http://www.argmin.
net/2016/05/18/mates-of-costate/

success in training neural nets, the adjoint method has enabled researchers to
tackle complex control problems with millions of control inputs. An elegant
example is the work “Fluid Control with the Adjoint Method” [1], where
the simulation of a human-shaped smoke cloud required over one million
control inputs. Naive derivative computation with this number of parameters
is nearly intractable, while backpropagation allows it to scale to real time
animation. As the backpropagation technique has become better understood
and more ubiquitous, we’ve entered a period of differentiable programming
5 where we can assemble sophisticated programs and their derivatives to 5 https://en.wikipedia.org/wiki/

Differentiable_programmingenable optimization of these programs.
We will first look at back-propagation as a general algorithm to compute

gradients, then we will see several examples including multi-layer neural
networks and the LQR problem. An excellent reference on the origins and
general backpropagation technique is 6. The book Deep Learning 7 provides a 6

7fine introduction in section 6.5.

Total vs. Partial Derivatives

In dealing with compositions of functions, a crucial distinction must be made
between two types of derivatives, total derivatives and partial derivatives.
The partial derivative of a function describes the change in output resulting
from a change in direct dependencies– i.e. a module has a set of inputs and
we evaluate how the output of the module changes in terms of these inputs.
The total derivative of a function describes the change of the output resulting
from all dependencies, direct and indirect. For instance, in a control problem,
a module describing the result of dynamics at time time t, xt+1 may have no
direct dependence on a control ut−5 at time step t− 5 and hence has partial
derivative of 0. However, there is a potentially non-0 total derivative of that
output in terms of ut−5, as this control effects the output, albeit indirectly.

In a sense, partial derivatives are “syntactic” and total derivates are semantic,
representing the complete effect of varying a single parameter or input on a
resulting computation.

The Chain Rule

In other terms, the partial derivative does not account for the composition
but rather direct inputs, while the total derivative does. Backpropagation is
effectively a dynamic programming means to turn manually specified partial
derivatives into automatic computation of total derivatives.

Before diving in and solving more sophisticated problems using back-
propagation, let’s review some basic calculus starting with the chain rule of
calculus. First, let us consider the simplest case where x ∈ R is a real num-

http://www.argmin.net/2016/05/18/mates-of-costate/
http://www.argmin.net/2016/05/18/mates-of-costate/
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming

policy gradients 121

ber. Let f and g be two differentiable functions that map R to R. Suppose
that y = g(x) and z = f (y) = f (g(x)). Then, the chain rule tells us,

dz
dx

=
dz
dy

dy
dx

. (11.1.1)

The chain rule can further generalized to the case when x ∈ Rn and
y ∈ Rm are vectors8. Let f : Rm → R and g : Rn → Rm be two differentiable 8 In fact, the chain rule can be general-

ized to the case of “tensors”. The use
of this phrase in deep learning doesn’t
imply the geometric meaning of math-
ematics, but rather simply refers to a
multi-dimensional array of numbers.
See

functions. As before, suppose that z = f (g(x)). Then, we have,

∂z
∂xi

=
m

∑
j=1

∂z
∂yj

∂yj

∂xi
. (11.1.2)

In vector notation, we rewrite the above equation as,

∇x z =

(
∂y
∂x

)>
∇y z, (11.1.3)

where ∇x z = [∂z
∂x1

, . . . ∂z
∂xn

]> and ∇y z = [∂z
∂y1

, . . . ∂z
∂ym

]> are the gradient of z
with respect to x and y, respectively, and

∂y
∂x

=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


is the Jacobian matrix of the function g.

Block Diagrams

Now that we are equipped with the necessary mathematical tools to compute
gradients, let us take one step further and look at how we can represent how
the modules are interconnected in a system using a block diagram.

In the language of block diagram, each module or operation is represented
by a block, whereas the arrows between blocks indicate variables that are
inputs to/outputs of the operations. For example, the system considered in
the previous section can be represented as Figure 11.1.1.

Figure 11.1.1: The block di-
agram representation of the
simple example.Given a block diagram and a variable x in the diagram, we say a variable

y is a parent9 of x if there exists a block f such that x is the output of f and 9 Here we abuse the definition of
parents by denoting an “edge” as
a parent of another “edge” in the
diagram. Same for children.

y one of the inputs. Note that a variable may have multiple parents since
there can be multiple inputs to block f . We denote the set of variables that
are parents of x as Parents(x). Conversely, we call a variable y as a child of x
if x is a parent of y, i.e., there exists a block g such that y is the output of g
and x is one of the inputs. We denote the set of variables that are children of
x as Children(x).

We say a block diagram is acyclic if it has no cyclic paths. For back-
propagation, we assume that the associated block diagram is acyclic10, and 10 Recurrent neural networks and closed

loop control systems (with a finite
horizon) can be represented by an
acyclic diagram through an operation
called unfold. We will discuss it later.

there exists a topological ordering (over variables) such that the output of the
system is the last one in the list. In our case, we assume that the output of

122 draft: modern adaptive control and reinforcement learning

the system is a scalar J ∈ R. It could be the value of the loss function if we
are training a neural network, it can also be the total cost of the trajectory(ies)
if we are optimizing a policy.

Recall that we are interested how the output J is changed when we
change a variable x in the diagram, which is precisely the gradient ∇x J.
By the chain rule, we have,

∇x J = ∑
y∈Children(x)

(
∂y
∂x

)>
∇y J (11.1.4)

Examples

To make things more concrete, let us look at some examples.

• Linear

Figure 11.1.2: The block dia-
gram of the linear module.

A linear module takes two inputs x and w to produce output y = f (x, w) =

w> x. Assume that the system is associated with an overall output J =

L(y). Then, we have, (
∂y
∂x

)>
= w,

(
∂y
∂w

)>
= x (11.1.5)

∇x J =
(

∂y
∂x

)>
∇y J =

dL
dy

w (11.1.6)

∇w J =
(

∂y
∂w

)>
∇y J =

dL
dy

x (11.1.7)

• Squared Loss

Figure 11.1.3: The block di-
agram of the squared loss
module.

A squared loss module takes two inputs x and y and produces output z =

f (x, y) = 1
2 (y − x)>(y − x) = 1

2‖y − x‖2. Assume that the system is
associated with an overall output J = L(z). Then, we have,(

∂z
∂x

)>
= x− y,

(
∂z
∂y

)>
= y− x (11.1.8)

∇x J =
(

∂z
∂x

)>
∇z J =

dL
dz

(x− y) (11.1.9)

∇y J =
(

∂z
∂y

)>
∇z J =

dL
dz

(y− x) (11.1.10)

• Branch

policy gradients 123

Figure 11.1.4: The block dia-
gram of the branch module.

A branch module takes in one input x and produces two outputs y1 =

f1(x) = x and y2 = f2(x) = x. Assume that the system is associated with
an overall output J = L(y1, y2). Then, we have,(

∂y1
∂x

)>
=

(
∂y2
∂x

)>
= I (11.1.11)

∇x J =
(

∂y1
∂x

)>
∇y1 J +

(
∂y2
∂y

)>
∇y2 J = ∇y1 J +∇y2 J (11.1.12)

• Addition

Figure 11.1.5: The block dia-
gram of the plus module.

An addition module takes in two inputs x and y and produces output
z = f (x, y) = x + y. Again, assume that the system is associated with an
overall output J = L(z). Then, we have,(

∂z
∂x

)>
=

(
∂z
∂y

)>
= I (11.1.13)

∇x J =
(

∂z
∂x

)>
∇z J = ∇z J (11.1.14)

∇y J =
(

∂z
∂y

)>
∇z J = ∇z J (11.1.15)

Back-propagation: A Dynamic Programming Algorithm

Although given any variable x in the diagram, we can calculate the gradient
of the output J with respect to the variable x by recursively applying the
chain rule. However, when we are training a neural network or solving an
optimal control problem, we oftentimes want to compute the gradient with
respect to a large set of variables, such as weights in every layer of the neural
network, or the control input at every time step. The question then becomes,
can we do something better than calculating the gradients one by one? The
answer is yes!

To see this, let us look back at the linear module example. When we
calculate the ∇x J and ∇w J in (11.1.6) and (11.1.7), we actually use the value
of ∇y J for multiple times. Therefore, if we can somehow store the previously
calculated gradients, and order the variables in such a way that we can
make use of the gradients computed previously, then we can save a lot of
computation by reusing these gradients. This idea of dynamic programming
is the main idea behind back-propagation.

124 draft: modern adaptive control and reinforcement learning

Recall from the previous part that the gradient with respect to a variable
x can be computed based on the gradient with respect to all its children
y ∈ Children(x),

∇x J = ∑
y∈Children(x)

(
∂y
∂x

)>
∇y J.

Based on this observation, we see that in order to reuse the previously
computed gradient, we need to order the variables backwards – from the
output to the inputs, from the parents to the children. Then, we need to
backward propagate the gradients from the children to the parents, this is
where the name back-propagation comes from. 11 11 This dynamic programming order-

ing might remind you a bit of value
iteration from the earliest lectures. It
should! If you think of the output of
the final module as the value function,
backpropagation is simply doing value
iteration with a local, linear approxima-
tion of the value function. As such, it’s
essentially value-iteration in disguise.

The “Learning” Algorithm

Now, let us try to do something useful with the back-propagation algorithm.
Assume that there are a set of input variables in the diagram called param-
eters that we are free to choose. We denote these parameters as {wi}i. Ex-
amples of these parameters include weights in the neural networks, control
inputs and initial conditions, etc. Conversely, there are other input variables
whose values are given and we have no control over, such as the inputs to
the neural network, the system dynamics, etc. Our goal is to find a set of
parameters such that the value of some scalar output J is minimized (loss for
training neural networks, cost for optimal control problems, etc), i.e.,

{w∗i }i = arg min
{wi}i

J (11.1.16)

We are interested in designing a learning algorithm that updates param-
eters of a system to reduce the value of J. One way to perform the gradient
descent algorithm,

wk+1
i = wk

i − α∇wi J. (11.1.17)

where α > 0 is the learning rate. Note that here the gradients can be calcu-
lated by the back-propagation algorithm.

In summary, there are three main steps in the learning algorithm: forward-
propagation, back-propagation, and gradient descent. Forward propagation con-
sists of generating all module outputs by running the system “forward”
(from the inputs to the output). This is necessary for recursively evaluating
all the partial derivatives in the back propagation step, as detailed in the
previous section. Finally, once all gradients have been calculated, we take a
gradient descent step. Then we repeat the whole process until convergence.
12 12 More sophisticated algorithms than

gradient descent are at times used
that automatically scale individual
directions or apply approximations to
a second order method. See for more
details.

Ian Goodfellow, Yoshua Ben-
gio, and Aaron Courville. Deep
Learning. MIT Press, 2016.
http://www.deeplearningbook.org

11.2 System Examples

Below are examples of modular systems where back-propagation can be
used.

Linear Regression Example

We can describe a linear regression by a linear module cascaded with a
squared loss module, as shown below. Linear module takes two inputs x

http://www.deeplearningbook.org

policy gradients 125

and w, and output z = w>x. Squared loss module takes inputs z and y, and
output J = 1

2 (z − y)>(z − y). The system takes inputs x, y, and w, where
x corresponds to the data, y are the respective regression targets, and w is
the regression parameter we can control. Our goal is to minimize the loss
z. Back-propagation is usually not used here because it is not difficult to
calculate the total derivatives directly.

Linear	
 Module	

	

	
 Loss	
 Module	

	

	

w

y

xin x1

x2f(x) = wT x

f(x) =
1

2
||y � x||2

Figure 11.2.1: Linear regression
represented as a cascade of
modules.

Neural Networks

A neural network consists of layered linear modules and nonlinear firing
units. Traditionally, the firing units are sigmoid functions such as hyperbolic
tangent or the logistic function. Recently, the nonlinear rectifier function
shown below has come into common practice. The sigmoid functions have
small linear support regions between saturation, which require the inputs
to be scaled properly. The rectifier does not suffer from these issues, and is
computationally simpler, allowing for large neural networks to be applied to
a variety of data.

In deep, multi-layer networks, cascading makes it difficult to directly de-
termine total derivatives for all the parameters. Utilizing the back-propagation
algorithm, however, we can efficiently tune the linear module weight param-
eters.

y

x2

Squared	
 Loss	

	

	

	

	

	

	

	

	

	

1

2
||y � x||2

	

	

	

	

	

Linear	

Rec0fier	
 	

	

	

	

	

	

	

wT x
xi

wi

xi+1

i = 1 . . . N

xin

Figure 11.2.2: A neural net.

Let J be the output of the squared loss function. Then, we have,

∇xN+1 J = xN+1 − y. (11.2.1)

126 draft: modern adaptive control and reinforcement learning

By the chain rule, for any i = 1, . . . , N, we have,

∇xi J =
(

∂xi+1
∂xi

)>
∇xi+1 J (11.2.2)

∇wi J =
(

∂xi+1
∂wi

)>
∇xi+1 J (11.2.3)

We can use these relations to recursively calculate all the gradients of our
system using only partial derivatives and back propogating gradients from
later modules in the system. This process begins at the output.

Note that there are numerous variations on neural network architectures
and update algorithms for domain-specific applications. Variations include
pooling, probabilistic drop-out, autoregressive loss, and convolution layers,
etc.

11.3 Relating LQR and Backprogation

By now, we have seen a few “backwards” algorithms in this class, the back-
propagation algorithm that we just saw and the value-iteration/Riccatti
recursion used for the LQR problem. One natural question one may ask
is whether there are some connections between these. In fact, one can find
multiple connections.

DDP, Model-based optimization and second-order backpropagation

Perhaps the most natural policy gradient approach is to consider optimizing
the parameters of a policy where we can completely specify the dynam-
ics and cost function as modules in a computation graph as well. In this
complete, model-based case (similar to that of the LQR setting), we can use
gradient descent to optimize parameters of a policy.

If we apply backpropagation to such a chain of modules (rather than a
general Directed Acyclic Graph), backprogation can be understood as mak-
ing a linear approximation of a value function. In this viewpoint, DDP can be
understood as making a second order approximation of the value function.
One can develop more sophisticated variants of DDP/iLQR that work on
general directed graphs that can be seen as second order generalizations of
backpropagation. 13. 13

Rederiving LQR with Back-propagation

Another connection is that we can think about the Ricatti back-up equation
as coming about from following the same dynamic programming computa-
tional pattern as backpropagation, but propagating analytic derivatives.

Recall from the earlier lecture that the LQR problem is stated as the fol-
lowing,

min
u0,...,uT−1

T−1

∑
t=0

(
xt
>Qxt + ut

>Rut

)
(11.3.1)

s.t. xt+1 = Axt + But, ∀t = 0, . . . , T − 2 (11.3.2)

where xt+1 = Axt + But is the system dynamics, and xt
>Qxt + ut

>Rut is the
instantaneous cost at each time step.

policy gradients 127

First, let us rewrite the LQR problem into a block diagram. The block
diagram of the LQR problem is shown in Figure 11.3.1. Here we introduce a
quadratic cost module at each time step and aggregate them into a total cost
J.

Figure 11.3.1: Finite horizon
LQR realized by a block dia-
gram.

First, we have,

∇uT−1 J = 2R uT−1, (11.3.3)

∇xT−1 J = 2Q xT−1. (11.3.4)

By the chain rule, for any t = 0, . . . , T − 2, we have,

∇xt J =
(

∂J
∂xt

)>
+

(
∂xt+1

∂xt

)>
∇xt+1 J

= 2Q xt + A>∇xt+1 J (11.3.5)

∇ut J =
(

∂J
∂ut

)>
+

(
∂xt+1
∂ut

)>
∇xt+1 J

= 2R ut + B>∇xt+1 J (11.3.6)

With the gradient we get from back-propagation, one can certainly run
gradient descent for a set of controls {ut}T−1

t=0 . The gradient descent process
does not require a matrix inversion as we saw earlier, but as a cost, it requires
possibly many gradient descent steps and does not provide a control policy
but rather optimizes an open-loop trajectory. This can also be viewed as a
policy search approach to the LQR problem.

Note, however, that we can also solve for optimal input using these gra-
dients since we know that the problem is convex and we have a closed-form
expression of those gradients – we can just set the gradients to zero!

• At time step T − 1, by setting ∇uT−1 J = 0, we have,

2R uT−1 = 0 ⇒ uT−1 = 0. (11.3.7)

Let VT−1 = Q, we have,

∇xT−1 J = 2Q xT−1
.
= 2VT−1 xT−1. (11.3.8)

• At time step T − 2, we have,

∇uT−2 J = 2R uT−2 + B>∇xT−1 J

= 2R uT−2 + 2B> VT−1 xT−1

= 2R uT−2 + 2B> VT−1 (A xT−2 + B uT−2)

= 2(R + B> VT−1 B) uT−2 + 2B> VT−1 A xT−2

(11.3.9)

128 draft: modern adaptive control and reinforcement learning

By setting ∇uT−2 J = 0, we have,

uT−2 = −(R + B> VT−1 B)−1 B> VT−1 A xT−2
.
= KT−2 xT−2. (11.3.10)

Meanwhile,

∇xT−2 J = 2Q xT−2 + 2A>∇xT−1 J

= 2Q xT−2 + 2A> VT−1 (A + B KT−2) xT−2

= 2(Q + (A + B KT−2)
> VT−1 (A + B KT−2)

− K>T−2 B> VT−1 (A + B KT−2)) xT−2

= 2(Q + (A + B KT−2)
> VT−1 (A + B KT−2) + K>T−2 R KT−2) xT−2

.
= 2VT−2 xT−2.

(11.3.11)

• By repeating the process, we get,

Kt−1 = −(R + B> Vt B)−1 B> Vt A

Vt−1 = Q + (A + B Kt−1)
> Vt (A + B Kt−1) + K>t−1 Rt Kt−1

(11.3.12)

This is precisely the Riccati equation!

policy gradients 129

11.4 Policy Gradient Methods

In the standard RL setting, we do not have access to differentiable modules
that describe the dynamics (and often don’t have access to the cost function
in this form either). Instead, we can sample trajectories, or perhaps have
access to a somewhat richer sample based model as described in earlier lec-
tures. Value function methods like Q-learning and SARSA use information
from every transition (s, a, r, s′) in every trajectory, while black-box policy
optimization methods only look at the total reward of the trajectories ig-
noring all structure to the reinforcement learning problem. It’s natural to
ask if we can use more structure without the difficulties of value function
approximation.

As we have seen earlier in the lecture, if the environment model and the
reward function are known, we can compute the policy gradient conveniently
using the back-propagation algorithm. However, in reinforcement learning,
we often care about the case when we don’t have access to the environment
model and/or the reward function. Policy gradient methods seek to estimate
the policy gradients from trajectories without access to the environment
model and the reward function.

Before we dive in to the details, we should consider whether a gradi-
ent exists for a certain policy class. This can be interpreted as a continuity
condition of the mapping from the parameters in the policy class to the tra-
jectories. This is clearly false for discrete action spaces and deterministic
policies, since an infinitesimally small change in parameters can drastically
change the policy and hence the trajectories. Therefore, in this lecture, we
consider a class of stochastic policies parameterized by θ, πθ : s 7→ πθ(a|s).
Under mild assumptions about the environment, we can safely assume that
the policy gradient always exists for this policy class since stochastic policies
“smooth out” the problem. 14 14 The general strategy of lifting from

a discrete space to a distribution to
ensure continuity is used throughout
machine learning and optimization.
Consider, [Arora et al., 2012] as an
excellent introduction to the exponen-
tiated gradient approach to solving
problems.

Let ξ denote a trajectory of states and actions, ξ = (s0, a0, . . . , sT−1, aT−1).
We define the total reward of the trajectory ξ as,

R(ξ) =
T−1

∑
t=0

r(st, at).

Our goal is to find the parameters that produce a policy that maximizes
the expected total reward of the trajectories,

J(θ) = Ep(ξ|θ)[R(ξ)] = Ep(ξ|θ)

[
T−1

∑
t=0

r(st, at)

]
,

where p(ξ|θ) is the probability of the trajectory ξ given the policy parameter-
ized by θ, which, we will see later, is also dependent on the transition model
of the environment.

To find the optimal policy, we compute the policy gradient by taking the
derivative with respect to θ.

∇θ J = ∇θ Ep(ξ|θ) [R(ξ)]

= ∇θ ∑
ξ∈Ξ

p(ξ|θ) R(ξ),

where Ξ denotes the set of all possible trajectories. In the case when the
state and/or action space is continuous, the sum should be replaced by an

130 draft: modern adaptive control and reinforcement learning

integral. The derivation will remain the same for integrals, although some
steps would require additional justification15. 15 For example, the dominated conver-

gence theorem needs to be invoked
in order to swap the integral with the
gradient operator in the next step.

Since R(ξ) is the total reward of a given trajectory ξ, it has no dependence
on θ. Therefore,

∇θ J = ∑
ξ∈Ξ

(∇θ p(ξ|θ)) R(ξ). (11.4.1)

However, we cannot compute the gradient with eq. (11.4.1) because it
requires us to evaluate the gradient for all possible trajectories. Instead, we
want to obtain at least an estimate of the policy gradient using samples of
trajectories. Therefore, we want to express the gradient as an expectation
over probability p(ξ|θ) – the moment we do that, we can use the law of large
numbers to draw samples from the distribution and estimate the expectation.
Therefore, we use a simple trick,

∇θ J = ∑
ξ∈Ξ

p(ξ|θ)
p(ξ|θ) (∇θ p(ξ|θ)) R(ξ)

= Ep(ξ|θ)

[∇θ p(ξ|θ)
p(ξ|θ) R(ξ)

]
.

By the chain rule, we have, ∇θ log (p(ξ|θ)) =
∇θ p(ξ|θ)

p(ξ|θ) . So, we have an
elegant expression of the policy gradient as an expectation,

∇θ J = Ep(ξ|θ) [∇θ log (p(ξ|θ)) R(ξ)] . (11.4.2)

This is sometimes called the likelihood ratio policy gradient. The likelihood
ratio policy gradient can be interpreted as increasing the (log) probability
of the trajectories with high reward and decreasing the (log) probability of
the trajectories with low reward. To see this, consider a single trajectory ξ.
Imagine that R(ξ) is a large positive number, then if we do gradient ascent
with respect to the total reward J, we are in some sense doing gradient ascent
with respect to log (p(ξ|θ)) according to eq. (11.4.2). Conversely, if R(ξ) is a
large negative number, we are performing gradient descent with respect to its
log probability in some sense.

Note, however, that we still can not compute the policy gradient using
the above equation because it requires us to evaluate ∇θ log p(ξ|θ) in the
expectation, yet we do not know the transition model p(st+1|at, st).

However, we will see that it is not a problem for policy gradient methods.
If we assume the Markov property, we have,

p(ξ|θ) = p(s0)

(
T−2

∏
t=0

p(st+1|at, st)

)(
T−1

∏
t=0

πθ(at|st)

)
.

Then, we have,

∇θ log p(ξ|θ) = ∇θ log p(s0) +

(
T−2

∑
t=0
∇θ log p(st+1|at, st)

)

+

(
T−1

∑
t=0
∇θ log πθ(at|st)

)
.

However, log p(s0) and log p (st+1|st, at) do not depend on θ, so the gradi-
ents with respect to these terms are zero. Hence,

∇θ J = Ep(ξ|θ)

[(
T−1

∑
t=0
∇θ log πθ (at|st)

)
R(ξ)

]
.

policy gradients 131

Notice that we don’t know and can’t control the system dynamics, but
by formulating the problem this way, we don’t need to – we have control
over the policy class we choose, and thus can easily compute an unbiased
gradient estimate. 16 For example, we can use the back-propagation algorithm 16 Often with outrageously high sample

variance however.that we saw last week to compute the gradient ∇θ log πθ (at|st).
As mentioned earlier, we can now use the law of large numbers to esti-

mate this expectation,

∇̃θ J =
1
N

N

∑
i=1

[(
T−1

∑
t=0
∇θ log πθ

(
a(i)t |s

(i)
t

))
R(ξ(i))

]
. (11.4.3)

By the law of large number, we know that the estimated gradient in eq.
(11.4.3) is an unbiased estimate of the true policy gradient. Therefore, we can
run stochastic gradient ascent with this estimated gradient. This forms the
basis of the REINFORCE (Algorithm 20) algorithm (version 1, we will show
some improvements soon).

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy πθ

while not converged do
Run simulator with πθ to collect {ξ(i)}N

i=1
Compute estimated gradient

∇̃θ J =
1
N

N

∑
i=1

[(
T−1

∑
t=0
∇θ log πθ

(
a(i)t |s

(i)
t

))
R(ξ(i))

]

Update parameters θ ← θ + α ∇̃θ J
return πθ

In step 1, we run the simulator using the current policy to collect training
sequences. In step 2, we approximate the expectation by the sample mean.
Step 3 is the update rule of the algorithm with α being the step size. The
algorithm is then repeated until convergence or until you are bored.

An example: Tetris

We will use Tetris as an example to show how you might choose your policy
function πθ(a|s) and how you would compute ∇θ log πθ(a|s). Suppose we
have some features representing the state-action pair of the Tetris game. For
instance f1 =the number of “holes” after the placement, f2 =the height of
the highest column after the placement, etc. Due to the log in eq. (11.4.3), a
convenient stochastic policy is,

πθ(a|s) =
exp

(
θ> f (s, a)

)
∑
a′

exp
(
θ> f (s, a′)

) .

This is sometimes called the Boltzmann distribution or Gibbs distribution.
The gradient of the probability distribution can be computed by any

method, e.g. using back-propagation. However, it is fairly simple to solve

132 draft: modern adaptive control and reinforcement learning

analytically:

∇θ log πθ(a|s) = ∇θ

[
θ> f (s, a)− log ∑

a′
exp

(
θ> f (s, a′)

)]

= f (s, a)−
∑a′ f (s, a′) exp

(
θ> f (s, a′)

)
∑a′ exp

(
θ> f (s, a′)

)
= f (s, a)−∑

a′
f (s, a′)πθ

(
a′|s
)

= f (s, a)− Eπθ(a′ |s)
[

f (s, a′)
]

(11.4.4)

This is essentially computing the difference between the feature at state
s and action a versus the expectation over all actions for that state that we
could have chosen, in a way the “average” feature. Assume that we observe
that feature i for action a is larger than the average over all actions. According
to eq. (11.4.4), if performing action a at state s produces a trajectory that has
high reward, we will increase the value of θi to upweight this particular fea-
ture. Because it seems that this feature is “helpful” for getting high rewards.
On the other hand, if this state-action pair produces low reward trajectories,
we may conclude that feature i is “harmful”. So we make the corresponding
parameter θi to be small or negative to reflect this observation.

11.5 Reducing Variance

Although the estimated gradient in eq. (11.4.3) can in theory provide an
unbiased estimate, it suffers from high variance. In order to see this, recall
that the likelihood ratio policy gradient increases the probability of the tra-
jectories with high reward and decreases the probability of the trajectories
with low reward. However, imagine when every trajectory has a very high re-
ward – although some are higher than others. Then, since we only has finite
number of samples at each iteration, the estimated gradient will push the
probability of all these trajectories higher (if possible) since the total reward
is high (and hence make the probability of other trajectories lower). How-
ever, the algorithm has no idea about the reward of trajectories compared to
other trajectories. Therefore, we can imagine that the estimated gradients are
pointing in different directions at each iteration. In fact, without making the
modifications introduced in this part, the REINFORCE algorithm performs
poorly compared to “black-box" approaches.

One simple modification to reduce the variance is to take advantage of
causality – the actions selected now cannot affect past rewards.

Figure 11.5.1: A trajectory of
states, actions and rewards. We
consider changing the action at
time t in order to get a better
expected future reward.

policy gradients 133

If we consider a trajectory of states and rewards, we want to change the
action at time t to maximize expected reward. Intuitively, we know that
changing the action at time t cannot affect the rewards obtained in the past,
since we have already received them. Thus, we can represent our expected
reward as only the future reward.

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0

(
∇θ log πθ(at|st)

(
t−1

∑
t′=0

r(st′ , at′) +
T−1

∑
t′=t

r(st′ , at′)

))]

= Ep(ξ|θ)

[
T−1

∑
t=0

(
∇θ log πθ(at|st)

T−1

∑
t′=t

r(st′ , at′)

)]
,

(11.5.1)

where ∑T−1
t′=t r(st′ , at′) is sometimes called future reward or reward-to-go. We

can use this idea to remove the dependence of past rewards from the calcula-
tion of our gradient.

One can reduce the variance even further by introducing baselines for the
expected total rewards. Recall that one of the reasons for the high variance is
that the algorithm does not know how well the trajectories perform compared
to other trajectories. Therefore, by introducing a baseline for the total reward
(or reward to go), we can update the policy based on how well the policy
performs compared to a baseline. The variance can hopefully be reduced if
the baseline approximates the average performance of the trajectories. But
how do we know that whether the estimated gradient still makes sense?

Let’s first take a look at the expectation Ep(ξ|θ)[∇θ log p(ξ|θ)b]. We have,

Ep(ξ|θ)[∇θ log p(ξ|θ) b] = ∑
ξ∈Ξ
∇θ p(ξ|θ) b

= ∇θ

(
∑

ξ∈Ξ
p(ξ|θ)

)
b

= (∇θ 1) b = 0.

(11.5.2)

Therefore, the estimated policy is still unbiased if we introduce a baseline
for the total reward (or reward to go). Note here that the above equation
holds as long as b does not depend on θ, hence b can potentially be a func-
tion of the state, i.e. b = b(st).17 In fact, a common choice of baseline is the 17 However, some additional effort is

needed to show that a time-dependent
baseline actually works, including
expanding p(ξ|θ) in the expectation as
a product of the transition probability
and the policy.

value function or some estimate of the value function.
Putting everything together, we can generate another policy gradient

expression,

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0

(
∇θ log πθ(at|st)

(
T−1

∑
t′=t

r(st′ , at′)− b(st)

))]
, (11.5.3)

We estimate the above policy gradient as

∇̃θ J =
1
N

N

∑
i=1

T−1

∑
t=0

(
∇θ log πθ(a(i)t |s

(i)
t)

(
T−1

∑
t′=t

r(s(i)t′ , a(i)t′)− b(s(i)t)

))
.

(11.5.4)

This can give us an unbiased estimate of the policy gradients with lower
variance.

134 draft: modern adaptive control and reinforcement learning

11.6 Eligibility Traces

Conveniently, the approach described above can be effectively implemented
with a simple infinite impulse response filter, rather than by remembering
entire trajectories. To lighten notation, consider the case when no baselines
are introduced, i.e. b ≡ 0.

Given a trajectory, we can introduce an iteratively computed eligibility
vector,

et = et−1 +∇θ log πθ(at|st)

Note then that,

et · r(st, at) =
t

∑
t′=0
∇θ log πθ(at′ |st′) r(st, at).

We will see that the gradient then is just a running sum of the expected
future rewards over all visited states at each time-step,

∆t = ∆t−1 + et · r(st, at).

If we expand this out, we can see that it is the same as gradient calculated
by the likelihood ratio method.

∆t = ∇θ log πθ(a0|s0) r(s0, a0) +
1

∑
t=0
∇θ log πθ(at|st) r(s1, a1)+

· · ·+
T−1

∑
t=0
∇θ log πθ(at|st) r(sT , aT)

=
T−1

∑
t=0
∇θ log πθ(at|st)

T−1

∑
t′=t

r(st′ , at′)

11.7 REINFORCE

The REINFORCE algorithm uses the eligibility trace to calculate the gradient
update. We start off with a set or parameters and several trajectories gath-
ered by forward simulating the policy generated by those parameters. We
can then use the eligibility trace to calculate the gradient and get a new set
of parameters. We add a discount factor, γ, to manage the general class of
infinite horizon discounted problems.

Algorithm 21: REINFORCE Algorithm
1: e = 0
2: ∆ = 0
3: for all t do
4: e← γ e +∇θ log πθ(at|st)

5: ∆← ∆ + 1
t+1 [r(st, at) · e− ∆]

6: end for

The resulting ∆t+1 is a noisy estimate of the gradient. We can either
compute ∆t+1 several times to get a less noisy estimate, or we can move a
small amount using the noisy estimate.

policy gradients 135

11.8 The Policy Gradient Theorem

The REINFORCE algorithm calculates the gradient using expected future
reward as determined by a trajectory.

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0
∇θ log πθ(at|st)

T−1

∑
t′=t

r(st′ , at′)

]

We can instead replace the the estimate of future reward ∑T−1
t′=t r(st′ , at′)

with the action value Qπθ , which by definition gives us the expected future
reward.

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0
∇θ log πθ(at|st) Qπθ (st, at)

]
We can update the gradient rule to take the expectation over the distribu-

tion of states rather than the expectation over the trajectories, this leads to the
Policy Gradient Theorem.

∇θ J = Es∼dπθ (s), a∼πθ(a|s) [∇θ log πθ(a|s)Qπθ (s, a)] (11.8.1)

Here, dπθ (s) is the distribution of states under policy πθ , i.e., the fraction
of time spent in state s,

dπθ (s) =
1
T

T−1

∑
t=0

pπθ (s, t),

where pπθ (s, t) is the probability that state s is visited at step t under policy
πθ .

The policy gradient theorem states that the gradient of average reward
under a policy πθ parametrized by θ is given by

∇θ J = Edπθ (s)Eπθ(a|s) [∇θ log(πθ(a|s) Qπθ (s, a)] (11.8.2)

The expectations are with respect to the distribution dπθ (s) of states given
a policy πθ and the actions taken under the policy πθ given the state s. We
can prove that, for the value function Vπθ (s) is only a function of the state s,
it can viewed as a baseline as we saw above. Thus, Eq. 11.8.2 is equal to:

∇θ J = Edπθ (s)Eπθ(a|s)
[
∇θ log(πθ(a|s) (Qπθ (s, a)−Vπθ (s))

]
, (11.8.3)

where Aπθ (s, a) = Qπθ (s, a)− Vπθ (s) is referred to as the advantage of action
a at state s under policy πθ . So why is this true?First, consider the inner
expectation. Because Vπθ does not depend on a, this is equivalent to,

Eπθ(a|s) [∇θ log(πθ(a|s)Vπθ (s)] = Vπθ (s) Eπθ(a|s) [∇θ log(πθ(a|s)] . (11.8.4)

That leaves ∇θ log(πθ(a|s) in the expectation. Intuitively that must be
equal to zero because the probability distribution πθ must sum to one, so the
sum over all changes must be equal to zero. We show more explicitly below
that this is indeed the case. We expand (Eq. 11.8.4) into sums over the states

136 draft: modern adaptive control and reinforcement learning

and actions. We can show that,

Eπθ(a|s) [∇θ log(πθ(a|s)] = ∑
a∈A

πθ(a|s)∇θ log(πθ(a|s))

= ∑
a∈A

πθ(a|s) ∇θπθ(a|s)
πθ(a|s)

= ∑
a∈A

∇θπθ(a|s)

= ∇θ

(
∑

a∈A

πθ(a|s)
)

= ∇θ 1 = 0.

(11.8.5)

Through linearity of expectation, we have,

Edπθ (s)Eπθ(a|s)
[
∇θ log(πθ(a|s)Vπθ (s)

]
=Edπθ (s)

[
Vπθ (s) Eπθ(a|s)

[
∇θ log(πθ(a|s)

]]
=Edπθ (s) [V

πθ (s) · 0] = 0.

(11.8.6)

Finally,

∇θ J = Edπθ (s)Eπθ(a|s)
[
∇θ log(πθ(a|s)Qπθ (s, a)

]
= Edπθ (s)Eπθ(a|s)

[
∇θ log(πθ(a|s) (Qπθ (s, a)−Vπθ (s))

]
= Edπθ (s)Eπθ(a|s)

[
∇θ log(πθ(a|s)Aπθ (s, a)

] (11.8.7)

Intuitively, this shows that the algorithm wants the advantage of the
action to be high, and wants to choose actions that are correlated with the
advantage being high. It adjusts the policy by making small changes towards
Q values that are higher than the average.

The policy gradient theorem connects estimating the gradient ∇θ J with
estimating Qπθ or Aπθ . For example,we can estimate Qπθ with some param-
eterized function Qπθ

φ using Approximate Dynamic Programming methods like
Fitted Q-Iteration or an advantage estimator Aπθ

φ , to approximate the advan-
tage function Aπθ (s, a). Also, we can use samples trajectories under policy
πθ to estimate the expectation in Eq. (11.8.7), which results in an estimated
policy gradient,

∇̃θ J =
1
N

N

∑
i=1

(
∇θ log πθ(ai|si) Aπθ

φ (si, ai)
)

. (11.8.8)

This leads to a class of methods called Actor–Critic Methods. Actor–Critic
methods learn a actor (the policy) and a critic simultaneously. The critic
produces the estimate of some value function (e.g., state-value function,
action-value function, advantage function, etc.) for bootstrapping (updating
the value function estimate for a state from the estimated values of other
states). By introducing the critic, the variance of the gradient estimate can be
further reduced. Many popular policy gradient algorithms, including TRPO,
PPO and DDPG, adopt the actor–critic architecture.

Examples

Let us consider a simple example of the actor-critic algorithm. Say we have
two actions that we can take from a given state and one feature for the state
s. One of our actions a0 is bad, while the other one a1 is good.

policy gradients 137

We use the Boltzmann distribution that we have seen in the previous
example,

πθ(a|s) = exp[θ> f (s, a)]
∑a′ exp[θ> f (s, a)]

.

Suppose that the features of our state and the two actions are f (s, a0) = 3
and f (s, a1) = 1.

Let’s say our current value of the parameter θ is θ = 1. Then, the probabil-
ities for taking each action are,

πθ(a0|s) =
exp[θ> f (s, a0)]

exp[θ> f (s, a0)] + exp[θ> f (s, a1)]
=

e3

e3 + e
=

e2

e2 + 1
≈ 0.88,

πθ(a1|s) =
exp[θ> f (s, a1)]

exp[θ> f (s, a0)] + exp[θ> f (s, a1)]
=

e
e3 + e

=
1

e2 + 1
≈ 0.12,

where e ≈ 2.71828 is the base of the natural logarithm
We then get an estimate of the future reward, possibly through our critic:

Qπ(s, a0) = 1 and Qπ(s, a1) = 100.
We have already seen previously that we can compute the derivative of

the log probability as follows:

∇θ log πθ(a|s) = f (s, a)− Eπθ(a′ |s)[f (s, a′)],

where,
Eπ(a′ |s)[f (s, a′)] ≈ 0.88× 3 + 0.12× 1 = 2.76.

We can just compute the gradient estimate18, 18 Note that this is an estimate because
we are not taking expectation over state

∇̃θ J = Ea∼πθ(a|s) [∇θ log πθ(a|s)Qπθ (s, a)]

= πθ(a0|s)∇θ log πθ(a0|s)Qπθ (s, a0)

+ πθ(a1|s)∇θ log πθ(a1|s)Qπθ (s, a1)

≈ 0.88× (3− 2.76)× 1 + 0.12× (1− 2.76)× 100

≈ −20.79

Thus the policy gradient algorithm tells us to decrease the value of θ since
the higher feature value seems to result in lower future reward. This makes
the probability of choosing a1 at s higher than the previous iteration.

11.9 Highly Correlated Features

Gradient ascent/descent methods depend greatly on the parameterization of
the policy. To see this, consider the two parameterizations of Tetris.

Parameterization 1: f1 = # of Holes after the placement, f2 = Height after
the placement. We use θ to denote the parameter for this parameterization.

Parameterization 2: g1 = . . . = g100 = # of Holes after the placement,
g101 = Height after the placement. We use φ to denote the parameter for this
parameterization

Then, for Parameterization 1, we have,

θ> f (x, a) = θ1 × # of Holes(x, a) + θ2 ×Height(x, a).

While for Parameterization 2, we have,

φ>g =

(
100

∑
i=1

φi

)
× # of Holes(x, a) + φ101 ×Height(x, a).

138 draft: modern adaptive control and reinforcement learning

When we take the policy gradient, we have,

∇θi J = Ep(ξ|θ)

[
T−1

∑
t=0

(
fi(s, a)− Eπθ(a′ |s)[fi(s, a′)]

)
Qπθ (st, at)

]

∇φi J = Ep(ξ|φ)

[
T−1

∑
t=0

(
gi(s, a)− Eπφ(a′ |s)[gi(s, a′)]

)
Qπφ (st, at)

]

Hence, we have ∇φ1 J = . . . = ∇φ100 J = ∇θ1 J. The policy gradient
algorithm takes a 100 times larger step for the actual weight corresponding to
the number of holes using Parametrization 2 than in Parametrization 1!

Gradient ascent (or steepest ascent) poses the problem of finding max∆θ J(θ +
∆θ) such that δθ is small. Gradient ascent measures “small” as the l2 norm
‖∆θ‖2 =

√
∑i(∆θi)2 ≤ ε. However this version of measuring "small" de-

pends on the parameterization of our policy. Ideally, we want the descent
to measure “small” based on changes in our policy and not depend on the
parameterization of the policy. We will address this problem in the next
lecture.

policy gradients 139

11.10 Natural Policy Gradient

In the general formulation of steepest descent, as given by Eq. (11.10.1), there
are many size metrics that can be utilized.

max∆θ J(θ + ∆θ) s.t. ‖∆θ‖ ≤ ε (11.10.1)

The gradient descent algorithm comes about when we choose the metric ‖ · ‖
to be the l2 norm over the parameters (

√
∆θ>∆θ). In policy gradient methods

such as REINFORCE, this definition of the metric can cause the algorithm
to fail, if utilizing highly correlated features. This is due to the fact that the
l2 norm defines a “small” change in the gradient direction as depending on
the cumulative sum in parameter change, which may have varying degrees
of correlation with actual policy change. Instead, we would like to define
the size metric such that the notion of “small” encompasses changes in the
parameterized policy, not simply the changes in the parameters themselves.
This leads to two questions.

Q1) What does steepest descent look like given other metrics?

Q2) What metric captures the fact that we would like our metric to be tied
to the difference between the πθ(a|s) and πθ+∆θ(a|s), and not just θ and
θ + ∆θ?

Q1 – What does steepest descent look like under other metrics?

For small changes in the parameters, we can think of the metric as some
quadratic function of the parameters, as evidenced by the Taylor expansion.
The steepest descent optimization problem then becomes

max∆θ J(θ + ∆θ) s.t. ∆θ>G(θ)∆θ ≤ ε (11.10.2)

where G(θ) defines the specific metric. In general, G is a distance metric
and thus is symmetric positive semi-definite19. This matrix defines the no- 19 Being pedantic, it is actually a

pseudo-metric if it has nontrivial
nullspace

tion of distance in the parameter space locally around θ and, in some cases,
can be constant; if this is true, the metric is referred to as flat. Intuitively, a
flat metric entails that distance is measured the same everywhere in the pa-
rameter space. While a flat metric can be helpful, in the general case it will
not accurately capture the true notion of distance on the parameter manifold.

However, we don’t always want to use flat metrics because it does not
always precisely reflect what does “small” means in our particular situations.
For example, one change of parameters ∆θ at θ1 can result in a very minor
change of our policy, while the same ∆θ can result in a large change at θ2. We
want our metric G(θ) to reflect that.

We can solve this new optimization problem (Eq. (11.10.2)) for the pa-
rameters using the technique of Lagrange multipliers. This converts the
constrained optimization problem (11.10.2) to unconstrained optimization
problem with respect to the Lagrangian of the system,

max∆θ L(∆θ, λ) = J(θ + ∆θ)− λ
[
∆θ>G(θ)∆θ − ε

]
, (11.10.3)

where λ ≥ 0 is the Lagrange multiplier.
The theory says that there exists a choice of λ ≥ 0 such that the constraint

optimization problem (11.10.2) and the unconstrained optimization problem

140 draft: modern adaptive control and reinforcement learning

(11.10.3) has the same solution. To begin with, we could use only the direc-
tion and simple take λ to be a fixed scalar and solve for ∆θ. However, it’s
been demonstrated in practice that parameterizing in terms of ε is actually a
good way to control step-size. Note that this is straightforward to compute
since we can simply normalize δtheta to ε norm in the G metric (that is, it’s
easy to explicitly compute the correct lagrange multiplier)! 20 20 This is the dominant benefit of the

“TRPO” method over naive implemen-
tations of the natural gradient.

Because we are only considering small steps in ∆θ, we can approximate
(11.10.3) by using the first-order Taylor expansion of J:

L(∆θ, λ) ≈ J(θ) + ∆θ>∇θ J − λ
[
∆θ>G(θ)∆θ − ε

] .
= L̃λ(∆θ). (11.10.4)

Here we use the notation L̃λ(∆θ) to emphasize that we are taking λ as a
constant and hence L̃λ is a function of ∆θ.

Note that the approximated Lagrangian L̃λ is quadratic in ∆θ. To find
the solution, we can simply take the partial derivative of the approximated
Lagrangian L̃λ with respect to the change in parameters and set it to zero:

∂L̃λ

∂∆θ
= ∇θ J − 2 λ G(θ)∆θ = 0. (11.10.5)

If G(θ) is nonsingular, the solution to the above equation is thus:

∆θ =
1

2 λ
G−1(θ)∇θ J. (11.10.6)

Intuitively, we are taking the gradient and multiplying it by the inverse
of the metric that defines what it means to be large, and then taking a step
in that direction. However, it may still be the case that G(θ) is singular, or
very close to singular, due to two features being very highly correlated. For
example, if we are using two features that are exactly the same, the metric
should look something like

G(θ) =

[
1 1
1 1

]
.

In this case, if we make change ∆θ = [∆θ1 ∆θ2]
> to the parameters, the

size of this change measured by metric G(θ) is thus,

∆θ>G(θ)∆θ =
[
∆θ1 ∆θ2

] [1 1
1 1

] [
∆θ1
∆θ2

]
= ∆θ2

1 + 2∆θ1∆θ2 + ∆θ2
2

= (∆θ1 + ∆θ2)
2

This means that changes in any of the features, or any combination of
the features should be the same if they add up to be the same because they
effectively act on the same feature. Because this matrix is singular, there
exists a space in which we can move, and it will not change the policy at all
(the nullspace of G(θ)). For example, we can add δ to the first parameter
and subtract the second by δ, and the policy is still the same. In this case,
the most natural thing to do is use the pseudo-inverse, denoted as G†(θ), in
place of the inverse, which means that we not trying to do anything in the
nullspace, only the space in which we can actually affect things.

policy gradients 141

Q2 – What metric do we want to use for policy gradients?

Despite now knowing how to change and solve the optimization problem for
different metrics, we are still left with the question of what the metric should
be. It turns out that there is a canonical answer for probability distributions,
given by Chentsov’s theorem. This theorem effectively says that there is a
unique metric such that distance is invariant to a class of changes to the
problem, such as label switching, for parametric family of distributions; this
metric is known as the Fisher Information Metric (Eq. 11.10.7).

G(θ) = Epθ

[
∇θ log(pθ)∇θ log(pθ)

>
]

(11.10.7)

Another way to come to this same result is to consider the Kullback–
Leibler divergence, or K-L divergence, of two probability distributions. Given
two probability distributions p and q,

KL(p‖q) = ∑
x∈X

p(x) log
(

p(x)
q(x)

)
. (11.10.8)

It turns out that the change in parameters measured by the Fisher Infor-
mation Metric is exactly the second order approximation of the K-L diver-
gence of the probability distributions before and after the change,

KL(pθ+∆θ‖pθ) ≈ ∆θ>G(θ)∆θ,

KL(pθ‖pθ+∆θ) ≈ ∆θ>G(θ)∆θ.
(11.10.9)

In general, the second-order approximation of “obvious” metrics on
probability distributions will result in the Fisher Information Metric.

For the specific problem of policy optimization, we take the Fisher Infor-
mation Metric on trajectories as our metric (Eq. 11.10.10). This is because we
want to essentially measure the distance between trajectories (distributions of
states) given changes in parameters.

G(θ) = Edπθ (s),πθ(a|s)
[
∇θ log πθ(a|s)∇θ log πθ(a|s)>

]
, (11.10.10)

Recall that dπθ (s) is the distribution of states, or the fraction of time spent in
states, under policy πθ .

In practice, G(θ) can be estimated as a running average of the states
experienced (Eq, 11.10.11), and its inclusion makes an enormous difference in
the success of algorithms such as REINFORCE. 21 21 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003G̃(θ) =

1
N

N

∑
i=1

[
∇θ log πθ(ai|si)∇θ log πθ(ai|si)

>
]

(11.10.11)

Intuitively, from a Machine Learning perspective, this algorithm is attempt-
ing to move in the direction that improves the performance the most, subject
to changing the distribution of input examples as little as possible. This is
also very similar to whitening of data, a natural normalization technique in
Machine Learning.

In the general case, where we are just doing steepest descent with a dis-
tance metric, the algorithm is referred to as the covariant gradient method.
In the special case shown above when you are measuring is distance between
probability distributions, the algorithm is known as the natural gradient
method.

142 draft: modern adaptive control and reinforcement learning

Then, we can combine this estimated policy gradient with the natural
gradient method, which gives us the update rule,

∆θ =
1

2λ
G̃−1(θ) ∇̃θ J. (11.10.12)

This is known as the Natural Policy Gradient method. Note that Eq. (11.10.12)
requires inverting the estimated Fisher information matrix, which can be
computationally expensive when the number of parameters is large. One so-
lution is to solve for Eq. (11.10.12) through iterative methods, e.g., Conjugate
Gradient method, and terminate early. This in practice gives us reasonably
good estimates of the natural policy gradient.

11.11 Conservative Policy Iteration

REINFORCE is essentially like a soft policy iteration, trying to change the
probability of actions so that they are correlated with things that have high
Q values. However, REINFORCE does not suffer from the disadvantages of
policy iteration, because it makes small changes.

We can modify approximate policy iteration to avoid the problems caused
by making big changes at each time step. We can make the policy iteration
stochastic, by choosing to follow the old policy with probability α, and tak-
ing action argmaxa Q̃(s, a) with probability 1− α. This algorithm, known as
conservative policy iteration, essentially makes a small change to the probabil-
ity distribution over trajectories, but by choosing actions to go the steepest
direction uphill.

11.12 Related Reading

[1] McNamara, A., Treuille, A., Popović, Z. and Stam, J., Fluid control using the
adjoint method, ACM Transactions On Graphics (TOG) 2004.

[2] Krizhevsky, A., Sutskever, I. and Hinton, G.E., ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012.

[3] Le, Quoc V, Building high-level features using large scale unsupervised learning,
Acoustics, Speech and Signal Processing (ICASSP), 2013.

[4] Bagnell, J.A. and Schneider, J. Covariant policy search, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2003.

	Policy Gradients
	Back-propagation
	System Examples
	Relating LQR and Backprogation
	Policy Gradient Methods
	Reducing Variance
	Eligibility Traces
	REINFORCE
	The Policy Gradient Theorem
	Highly Correlated Features
	Natural Policy Gradient
	Conservative Policy Iteration
	Related Reading

