
12
Iterative Learning Control

(This lecture is related to the paper Using Inaccurate Models in Reinforce-
ment Learning [1]. Reading the paper first is helpful in understanding the
material).

In the previous lectures, we have been looking into using policy gradi-
ent methods to find a good policy. The main advantage of policy gradient
methods is that they require us to know very little about the problem we are
solving – we don’t need to know the transition model, and we don’t need
to know the reward function either. All we need to do is collect a number
of roll-out trajectories and estimate the policy gradient based on that. As a
result of that, however, policy gradient methods have their natural limitation
that they generally require a large number of trajectories to work reasonably
well and they sometimes suffer from high variance in their gradient esti-
mates.

In this lecture, we take a different path by assuming that we know some-
thing about the particular problem we are solving. In particular, we assume
that we have a possibly inaccurate but hopefully helpful model of the system
and we know the reward function. We will see how we can approach the
reinforcement learning problem differently with this additional knowledge.

12.1 Model-based Reinforcement Learning

One straightforward way to solve this problem is to find an optimal policy
with respect to the (possibly inaccurate) model that we already have. This
idea lays the foundation of model-based reinforcement learning and optimal
control. In fact, we have seen an example of model-based reinforcement
learning techniques earlier in this class – LQR. It solves for the optimal policy
for a linear model and a quadratic reward function – although any practical
systems are hardly truly linear.

Given a (possibly time-varying) deterministic model f̂t : S×A → S and a
reward function r : S×A→ R, there is a slightly more general way to find a
good policy: solve for the policy gradient through back-propagation1. 1 Or the adjoint method if you are an

optimal controls person.Assume that we parameterize our policy πθ with parameter θ. Then, we
can represent the model-based reinforcement learning as a block diagram:

Note that we are using ŝt, ât and Ĵ here because they are not the actual
state, action and total reward we would get from running the actual system,
rather, they are just what we get from simulating through our approximated
model f̂t. Note, however, that s0 is not approximated because we assume that



144 draft: modern adaptive control and reinforcement learning

Figure 12.1.1: The block di-
agram representation of a
model-based RL problem using
an approximated model.

we start from a fixed state.
Recall from the earlier lecture that we can optimize the policy through

the “forward-propagation, back-propagation, gradient ascent” scheme. We
initialize our parameter at some arbitrary θ(0). At i-th iteration, we do:

1. Forward-propagation: Forward simulate πθ(i) using the approximated model

f̂t and observe the simulated trajectory {s0, a(i)0 }, {ŝ
(i)
1 , â(i)1 }, · · · {ŝ

(i)
T , â(i)T }

along with the approximated total reward Ĵ.

2. Back-propagation: Compute the approximated policy gradient ∇θ Ĵ(θ)
along the trajectory {s0, a(i)0 }, {ŝ

(i)
1 , â(i)1 }, · · · {ŝ

(i)
T , â(i)T } using back-propagation.

3. Gradient-Ascent: Update the parameter θ(i+1) = θ(i) + α∇θ Ĵ(θ).

Note that the approximated policy gradient ∇θ Ĵ(θ) we used here is fun-
damentally different from the estimated policy gradient ∇̃θ J(θ) we used for
the policy gradient methods. Here we use ∇θ Ĵ(θ), which is the exact gradi-
ent of the approximated total reward function, while ∇̃θ J(θ) is the estimated
gradient for the exact total reward function.

12.2 Iterative Learning Control

A typical problem in model-based reinforcement learning is that no matter
how well you try to model the system dynamics, there are always unmod-
eled errors that can easily throw your controller off course. A concrete ex-
ample is given in [1], where the authors want to control an RC car to follow
some trajectory. It is shown that the carpet threading is enough to cause their
linearized system to drift away from the planned trajectory.

In contrast, it is against our human intuition that a super sophisticated
model is required to perform many tasks such as steering a car. A young
adult who only has a crude idea of how a car steers can learn to make good
turns after a few trials: if the turn is too wide, steer more next time; if the
turn is too tight, steer less next time. This idea is also illustrate in the target
example in Fig 12.2.1.

Thus the key idea of Iterative Learning Control is (as the authors state):
“. . . to use a real world trial to evaluate a policy but then use the simulator
(or model) to estimate the derivative of the evaluation with respect to the
policy parameters.” In other words, we can use the actual system to do forward
propagation and then use our crude model for back propagation.



iterative learning control 145

(a) Initial shot is off (b) Aim at E2 instead of E1 (c) Aim at E3 and hit the bull’s eye

Figure 12.2.1: The target exam-
ple: (a) Initially we aim at the
bull’s eye(E1) but due to wind
or miscalibrated sight we end
up at x1. (b) Instead of aiming
at E1 which will end up at x1,
we aim at E2 which hopefully
will end up at E1. (c) Continue
updating the offset until we hit
the bull’s eye.

The Algorithm

Consider an approximated MDP problem (approximated in a sense that the
model isn’t very accurate but still informative) (S, A, f̂t, s0, r), where S is
the set of all possible states, A is the set of all actions, f̂t : S ×A → S is
the (possibly time-varying) deterministic approximated transition model,
s0 is the initial state and r : S → R is the reward function2. Assume both 2 Note that here that we assume that we

know the true reward function. Note
also that the reward is only defined on
states in this paper, but one can also
define it as a function of both states and
actions.

the system and the policy are deterministic and the policy is parameterized
by θ. We initialize our parameter at θ(0), the solution to the model-based
reinforcement learning problem we saw in the previous part. Then the i-th
iteration of the policy gradient proceeds as follows:

1. Execute the current policy πθ(i) on the real system and observe the actual

trajectory {s0, a(i)0 }, {s
(i)
1 , a(i)1 }, · · · {s

(i)
T , a(i)T }.

2. Augment the model by adding a (time-dependent) bias term to the origi-

nal model at every time step t: f̂ (i+1)
t (s, a) = f̂t(s, a)+

(
s(i)t+1 − f̂t(s

(i)
t , a(i)t )

)
.

3. Compute policy gradient ∇θ J(θ) using back-propagation with the up-
dated model and then update the parameter θ(i+1) = θ(i) + α∇θ J(θ).

In each iteration i, adding the time-dependent bias terms corrects the old
model so that if we re-run it with πθ(i) and f̂ (i+1)(s, a) we would get the exact

same state-action sequence {s0, a(i)0 }, {s
(i)
1 , a(i)1 }, · · · {s

(i)
T , a(i)T }.

(a) The original model f̂t. (b) The augmented model f̂ (t+1)
t .

Figure 12.2.2: At each itera-
tion, we augment the model
by adding a (time-dependent)
bias term to the original model
so that we would get the same
trajectory.

Therefore when updating the parameters θ in step 3, the correct trajectory
is used for computing the policy gradient. In most nonlinear control systems,



146 draft: modern adaptive control and reinforcement learning

this means using the actual trajectory for the linearization points though
the derivatives are computed using the old model (bias terms do not affect
derivatives) at these correct trajectory points.

12.3 The Theory

Once again we assume the system is deterministic and assume our policy is
parameterized by θ. Define the following function st = ht(s0, θ):

h1(s0, θ) = s1 = f0(s0, πθ(s0)) (12.3.1)

ht(s0, θ) = ft−1(st−1, πθ(st−1)) (12.3.2)

= ft−1(ht−1(s0, θ), πθ(ht−1(s0, θ))) (12.3.3)

In other words, ht(s0, θ) is the real world state at time t if we start at s0 and
follow the policy πθ . Similarly we can define ŝt = ĥt(s0, θ) which is the state
at time t using the approximated model and following πθ .

Let s0, s1, · · · sT be the real world state sequence obtained when executing
the policy πθ . Then the true policy gradient is given by:

∇θ J(θ) =
T

∑
t=0
∇st r(st)

dht
dθ

∣∣∣
s0,s1,···sT−1

(12.3.4)

Note here that the derivatives dht
dθ are total derivatives since ht is depen-

dent on θ through all previous time steps t′ = 0, . . . , t − 1. The chain rule
(back-propagation) is applied to every term in dht

dθ by the definition of Eq.
12.3.3.

Similarly we can define the approximated policy gradient as follows:

∇θ Ĵ(θ) =
T

∑
t=0
∇ŝt r(ŝt)

dĥt
dθ

∣∣∣
s0,ŝ1,···ŝT−1

(12.3.5)

Two sources of error make Eq. 12.3.5 differ from the the true policy gradi-
ent in Eq. 12.3.4:

1. The derivative in dĥt
dθ is based on an inaccurate model.

2. The derivatives in both ∇ŝt r(ŝt) and dĥt
dθ are evaluated along the wrong

trajectory.

What ILC does is that although we cannot deal with the first source of
error, we can at least run the system to get the actual trajectory instead of
using the wrong one predicted by our approximate model. The resulting
gradient is thus:

∇θ Ĵ(θ) =
T

∑
t=0
∇st r(st)

dĥt
dθ

∣∣∣
s0,s1,···sT−1

(12.3.6)

Brief Proof of Convergence and Optimality

It has been proved that if the model isn’t too bad and the problem is well-
behaved enough3 then following the gradient will converge to a neighbor- 3 Certain boundedness and smoothness

conditions hold for the true MDP.hood of a local optimum. More formally:∥∥∥∥∥ d ft
ds
− d f̂t

ds

∥∥∥∥∥
2

≤ ε and

∥∥∥∥∥ d ft
da
− d f̂t

da

∥∥∥∥∥
2

≤ ε⇒
∥∥∇θ Ĵ −∇θ J

∥∥
2 ≤ Kε, (12.3.7)



iterative learning control 147

where K is a constant related to the properties of the problem, such as the
dimensionality of the problem, upper bound for reward, horizon of the
problem, etc.

Further, if an exact line search is done for each gradient ascent step (every
gradient ascent step updates the parameter to the best parameter along the
gradient direction), the algorithm converges to a region of local optimality,

‖∇θ J‖2 ≤
√

2Kε. (12.3.8)

The above theorem guarantees that ILC converges to a region of local
optimality. On the other hand, in practice when the policy is close the true
optimal policy, it tends to oscillate without actually converging to the opti-
mum.

12.4 Related Reading

[1] Abbeel, P., Quigley, M. and Ng, A.Y., Using inaccurate models in reinforce-
ment learning., ICML 2006.

,




	Iterative Learning Control
	Model-based Reinforcement Learning
	Iterative Learning Control
	The Theory
	Related Reading


