
13
Response Surface Methods

In this lecture we introduce Response Surface Methods (RSM) for policy
optimization in reinforcement learning (RL). The problem setting in this
lecture makes two important assumptions:

Parametric policy the policy π : S → A depends on a parameter vector
θ ∈ Rd.

Episodic learning In this setting learning proceeds by interleaving two stages
in a loop:

1. Batch simulation (or execution) of one or more “episodes”1 under the 1 Previously described as “rollouts” in
this course.current policy.

2. Adjustment of the policy (in this case, of the current policy’s param-
eters) based on some aggregate performance metric from the simula-
tions (e.g. total sum of rewards).

Episodic learning contrasts with methods that continuously learn through-
out the simulation.

See table 13.1 for an example of episodes, policies and rewards in three
problem domains.

Domain

Tetris Helicopter

Episode Game Simulate for 1 minute
Policy Board→ Move (x, y, z, ẋ, ẏ, ż)→ (cycle, throttle, collective)

Reward # of lines cleared Remain close to desired trajectory

Table 13.1: Examples of
episodes, policies and rewards

150 draft: modern adaptive control and reinforcement learning

13.1 Optimization with Response Surface Methods

RSM is a general purpose, “black box” optimization method for any function
f : X→ R. The outline of RSM is as follows:

1. Pick an initial point x1.

2. For t = 1, . . . , T

(a) Obtain response f (xt).

(b) Fit a “response surface” f̂ to all data points {(x1, f (x1)), . . . , (xt, f (xt))}.
(c) Use the response surface to choose a new xt+1.

Note that t here means iterations rather than steps in episodes.
Step (b) involves fitting a function f̂ and step (c) optimizes over the re-

sponse surface f̂ . These steps may be computationally expensive. Hence,
RSM is most useful when evaluating f is itself very costly compared to solv-
ing the surrogate problems in steps (b) and (c), which is often the case in
reinforcement learning for robotics. If evaluating f is cheap, then we may be
better off using one of black box methods covered earlier, such as the cross
entropy method.

13.2 Fitting the response surface: Gaussian Process Regression

In step (b) of the algorithm we fit a response surface f̂ , sometimes called
the surrogate function, to all our data points {(x1, f (x1)), . . . , (xt, f (xt))}.
Intuitively, f̂ is an approximation the real f , but much less expensive to
evaluate, and it will guide our search for the location of the optima in f .

Gaussian processes (GPs) are a commonly used model in response sur-
faces methods that maintain a nonparametric prior over functions. The
intuition behind the GP prior is to see functions as a point in a continu-
ous, “infinite-dimensional” space. The joint distribution for any finite set
of samples { f (x1), . . . , f (xt)} is Gaussian and defined by a mean function
µ : X→ R and a covariance function k : X×X→ R:(

f (x0), . . . , f (xt)
)> ∼ N (µ, Σ)

µ =
(
µ(x1), . . . , µ(xt)

)>
Σij = k(xi, xj) ∀ (i, j) ∈ [1, . . . , t]2

Without loss of generality, the mean function µ is assumed to be always 0.
This is the same as preprocessing the data as f ′(x) = f (x)− µ(x).

Conceptually, the kernel function is like an “infinite-dimensional” covari-
ance matrix where Σij = k(xi, xj) = cov

(
f (xi), f (xj)

)
. Therefore it must meet

the equivalent of the SPD condition:

1. k(xi, xj) = k(xj, xi), ∀ xi, xj

2. Any matrix K s.t. Kij = k(xi, xj), that is symmetric positive semi-definite.

While we do not go into further detail here, we should note that choosing
a suitable kernel function is very important for the performance of the GP
regression and by extension, the RSM. This is a model selection problem,
which falls outside the scope of this lecture.

response surface methods 151

GP inference

Given a prior for f ∼ GP(µ, k) and a set of samples
(
(x1, f (x1)), . . . , (xt, f (xt))

)
,

we wish to compute a posterior over f (x∗) at any query x∗. We have
f (x∗)
f (x1)

...
f (xt)

 ∼ N

0
...
0

 ,

k(x∗, x∗) k(x∗, x1) . . . k(x∗, xt)

k(x1, x∗) k(x1, x1) . . . k(x1, xt)
...

...
. . .

...
k(xt, x∗) k(xt, x1) . . . k(xt, xt)

For notational convenience, let us define

K∗∗ = k(x∗, x∗)

Kx∗ =
[
k(x∗, x1), . . . , k(x∗, xt)

]>
Kxx =

[
k(xi, xj)

]N
i,j=1

Using the properties of the Normal distribution, it can be shown that the
posterior of f (x∗) is also a Gaussian:

f (x∗)| f (x1), . . . , f (xt) ∼ N
(
µt(x∗), σt(x∗)

)
(13.2.1)

µt(x∗)
.
= K>x∗K

−1
xx
[

f (x1), f (x1), . . . f (xt)
]> (13.2.2)

σt(x∗)
.
= K∗∗ − K>x∗K

−1
xx Kx∗ (13.2.3)

This gives us the posterior expected mean of f (x) at any point x in the
input space X. It also gives us a posterior variance for f (x), which we can
interpret as a measure of uncertainty about the value of f at the point. In
section 13.3 we will see how to use both in optimization.

Visualization

A good way to visualize a GP is to draw samples and plot them as func-
tions. For this one selects a set of t samples xi, i = 1, . . . , t, constructs the
corresponding covariance matrix with k, samples n-dimensional points from
the Gaussian with this covariance matrix, and plots them as functions. Fig-
ure 13.2.1 shows draws from two different GP priors.

Figure 13.2.1: Draws from
two different Gaussian
Process Priors. Both use a
squared exponential kernel
k(x, x′) = exp{−(|x− x′|2/l2)},
but with different characteristic
length-scale l. The left figure
has smaller l while the right
figure has larger l. The kernel is
graphically depicted by the red
dotted line.

The same procedure can be applied to the posterior function, but using
the posterior mean and covariance from eq. (13.2.1).

To learn more

This has been a very brief introduction to Gaussian Process regression. A
good place to learn more is [1].

152 draft: modern adaptive control and reinforcement learning

13.3 Choosing the next point to evaluate

For this section, we will switch notation to match the RL scenario:

• f → J

• x→ θ

J(θ) is the “true cost-to-go” function, which is unknown but what we’re
trying to optimize as function of θ, the parameter vector for the policy πθ . To
evaluate J(θ) means to perform one (or more) episodes of simulation using
the policy defined by θ.

Now, given all the samples
(
(θ1, J(θ1)), . . . (θt, J(θt))

)
observed so far and

and a GP prior, we can estimate the posterior J(θ) for any query θ. Let us
define

J(θ) ∼ N (µt(θ), σt(θ))

µt(θ)
.
= posterior mean for J(θ) according to eq. (13.2.2)

σt(θ)
.
= posterior variance of J(θ) according to eq. (13.2.3)

How do we choose the next point θt+1 to evaluate (step (c) in the RSM al-
gorithm outline)? Below we list some possible strategies, each with different
advantages and disadvantages.

Maximum of posterior mean

In this strategy, we simply use

θt+1 = argmax
θ

µt(θ)

To obtain the argmax we can use any optimization algorithm, such as gra-
dient descent, exhaustive search, Nelder-Mead, etc. (Note that this implies
we are performing a nonlinear optimization step for each iteration of RSM,
although on our estimated surrogate function, which is one of the reasons it
is relatively slow).

This is the most “greedy” strategy, maximizing exploitation over explo-
ration. As such it is more prone to converge in local optima. It may even
choose θt+1 = θt, in which case we will get stuck. Moreover, it ignores
the uncertainty of the estimate. Nonetheless, it may be a good choice if we
believe θt is close to a good optima.

Figure 13.3.1 shows this strategy in action. The first panel shows the true
objective function J(θ), in black, and three evaluations (black dots). The rest
are seven iterations of the RSM algorithm, ordered from left to right and
top to bottom. The solid red line is the expected posterior mean of J(θ),
µt(θ). The dotted red lines are a confidence interval for J(θ), reflecting the
magnitude of σt(θ). The blue line is the normalized value of the function
we maximize to obtain θt+1, in this case µt. As we can see, in this case the
strategy does nothing of interest, as the θt+1 (the small black dot) equals
one of the previously sampled points, and no further exploration occurs; the
maximum is not found.

response surface methods 153

Figure 13.3.1: The “maximum
of posterior mean” strategy in
action. See text for explanation.

Maximum of posterior variance

In this strategy, we use

θt+1 = argmax
θ

σt(θ)

That is, θt+1 is placed where our uncertainty about J(θ) is greatest, regard-
less of the expected value. This is the “opposite” of the last strategy in the
exploitation-exploration spectrum.

Figure 13.3.2 shows this strategy. We can see this strategy is good for
exploring over various different locations, but fails to find the function maxi-
mum.

Figure 13.3.2: The “maximum
of posterior variance” strategy
in action. See text for explana-
tion.

Maximum upper confidence bound

In practice, we want to balance exploitation and exploration. Therefore, a
sensible strategy is to choose

θt+1 = argmax
θ

µt(θ) + β σt(θ)

where β is a parameter regulating the exploitation-exploration tradeoff.
µt(θ) + β σt(θ) can be interpreted as an “upper confidence bound” for µt(θ).
This strategy works well, but has the disadvantage of requiring a tuning
parameter β.

Maximum probability of improvement

What we really want is to improve Jmax, the best value found so far.
Let us define an “improvement” function

I(θ) = max
(

J(θ)− Jmax, 0
)

154 draft: modern adaptive control and reinforcement learning

Since I(·) depends on J(θ), it is also a random variable. One strategy is to
maximize the probability of improvement:

θt+1 = argmax
θ

Pr
(

I(θ) > 0
)

or alternatively,

θt+1 = argmax
θ

∫ ∞

Jmax

N
(
y|µt(θ), σt(θ)

)
dy

The main problem with this strategy is that if we ever choose θt+1 = θt,
we we will get stuck there. To avoid this we can use a modified improvement
function

I(θt) = max
(

J(θt)− (Jmax + β), 0
)

But again, we have a tuning parameter β.

Maximum expected improvement

One problem with the last strategy is that we are only considering the prob-
ability of improvement, not the magnitude of the improvement. We can fix
this by using the expected improvement:

θt+1 = argmax
θ

E [I(θ)]

= argmax
θ

∫ ∞

Jmax

N
(
y|µt(θ), σt(θ)

)(
y− Jmax

)
dy

This has no tuning parameter and is one of the most popular RSM meth-
ods. One disadvantage is that it sometime tends to explore too much. Fig-
ure 13.3.3 shows this strategy in action. As we can see it has a good balance
of exploration and exploitation, and finds the maximum.

Figure 13.3.3: The “maximum
of expected improvement”
strategy in action. See text for
explanation.

Miscellaneous

• For any strategy, at each step we can sample a random point with some
probability ε. This encourages exploration.

• How do we take into account the stochasticity of J(θ) itself? Often it is
simply ignored, which conflates it with our uncertainty about the value
J(θ). Alternatively, it can be separately modelled as “process noise”,
which may be heteroscedastic (it varies with θ).

• We may take Jmax to be stochastic. In this case the expected improvement
requires a joint expectation calculation. Most people simply use the mean
of the GP at the maximum point. Empirically it doesn’t seem to matter
too much.

response surface methods 155

13.4 Related Reading

[1] Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian Processes
for Machine Learning. MIT Press, 2006. www.gausianprocess.org

www.gausianprocess.org

	Response Surface Methods
	Optimization with Response Surface Methods
	Fitting the response surface: Gaussian Process Regression
	Choosing the next point to evaluate
	Related Reading

