
1
Markov Decision Problems

1.1 Markov Decision Processes

Overview

We require a formal model of decision making to be able to syn-
thesize and analyze algorithms. In general, making an “optimal”
decision requires reasoning about the entire history previous obser-
vations, even with perfect knowledge of how an environment works.

A powerful notion that comes to us from the physical sciences
is the idea of state — a sufficient statistic to predict the future that
renders it independent of the past. In classical mechanics, the phase
space of positions and momenta forms that state: together with the
knowledge of an isolated rigid body (it’s inertia) and any torques ap-
plied, we can predict the future pose of the object without knowledge
of the past.

A Markov Decision Process (MDP) is a mathematical framework
for modeling decision making under uncertainty that attempts to
generalize this notion of a state that is sufficient to insulate the entire
future from the past. MDPs consist of a set of states, a set of actions,
a deterministic or stochastic transition model, and a reward or cost
function, defined below. Note that MDPs do not include observations
or an explicit observation model as the environment is assumed to be
fully observable at all times: in other words, an agent can observe the
state of the world.

The acronym MDP is overloaded to refer to a Markov Decision
Problem where the goal is to find an optimal policy that describes how
to act in every state of a given a Markov Decision Process. A Markov
Decision Problem includes a notion of what it means for a policy to
be optimal, including a discount factor that can be used to calculate
the present value of future rewards and an optimization criterion and
a horizon (possibly infinite) time that specifies when the problem
ends. Strategies for minimizing cost or maximizing reward vary, and

10 draft: modern adaptive control and reinforcement learning

should be time-dependent in finite horizon systems.
The key property – indeed the eponymous property – of an MDP

is that it is Markov. That is, the probability of observing future states
given the past depends (and holding fixed a sequence of actions)
only the most recent state and is conditionally independent of the full
history. We make that more precise after we introduce notation below
to cover key elements of an MDP.

Definitions

1. State Space: x ∈ X or s ∈ S. In robotics, examples of state
might include the pose of a rover or the configuration of a robot
arm. There is typically an initial state, denoted x0 and possibly a
terminal state that ends the problem if entered. State is meant to
evoke the notion of a full description (like position and velocity in
classical mechanics) of the system under consideration that makes
the previous trajectory irrelevant to the prediction of the future.

2. Action: a ∈ A or u ∈ U. Examples of actions include moving to
a discrete neighboring state or torques applied to a joint or wheel.
This space is often alternately called the control space.

3. Transition Model: For stochastic systems, we represent the tran-
sition model as the probability of an action a, taken from state x,
leading to state x′, denoted x′ ∼ T (x, a). Here T can be a prob-
ability mass function in case of systems with discrete set of states
or a probability density function if the system has a continuous
set of states. In deterministic systems, we often explicitly denote
the transition model as a deterministic function, i.e., x′ = T (x, a).
Note, however, that it is also possible to realize deterministic sys-
tems with a stochastic model with the Dirac delta distribution. In
an MDP this distribution is well defined, and independent of the
past: p(x′|x, a, history of all previous x’s and a’s) = T (x, a). This is of-
ten referred to as the plant (particularly in control literature) or the
environment. We will consider environments that are best modeled
by time-varying plans x′ = T (x, a, t) as well in these notes.

4. Reward or Cost Function: The reward r(x, a) or cost c(x, a) of
taking an action a at a state x. A reward or a cost function can be
used interchangeably: we can get the same solution if we define
the cost function as the negative of a given reward function and
switch the max (for framing as rewards) to min (for framing as
costs) during optimization. 1 In some situations, the cost or re- 1 Note, however, that sometimes the use

of the phrase cost is meant to imply that
the cost is strictly positive.

ward can be a function of only the state s, i.e., r(x) or c(x), or a
function of the next state x′ after executing action a, r(x, a, x′) or
c(x, a, x′), or some even more complicated combinations like being

markov decision problems 11

also a function of time, i.e., r(x, a, x′, t), or can itself be a random
variable (i.e., with distribution p(r | x, a, x′, t)). The last form is
the most general form that obeys the Markov property and enables
efficient computation.

5. Horizon: T ∈ N. The problem is considered over after T steps.
This often encodes the number of steps that we care/are able to
execute the policy. See Objective Function below. 2 2 If T = 1, optimal control can be

reduced to a greedy search, that is
choosing the action with the highest
reward. If 0 < T < ∞, then one must
reason T steps ahead to determine
the optimal policy starting from the
initial state. Often there is no discount
factor and the optimal policy may vary
wildly as a function of time. The case
where T = ∞ is typically more likely to
converge, as a discount factor γ is used
to dampen the effects of oscillation or
any time-dependent properties.

6. Discount Factor: 0 ≤ γ ≤ 1. This notion determines the current
value of future costs or rewards. The intuition is that rewards are
more valuable if they happen soon, so if a reward is received n
steps in the future, it’s only worth γn as much as in the present.

7. Policy:π ∈ Π : π(x, t) = a. A function that maps states (and an
optional time step) into actions. This specifies how to act in any
state. 3

3 In the simplest case, a policy is simply
a map from the current state to an
action, but policies can be much more
general and include information about
the transition model or information
about the history of previous states
(π : {x0, ..., xt} × T → A). We can
show that if a decision problem is
Markovian, an optimal policy need only
be a function of state and time, rather
than further history.

8. Value Function: Vπ(x, t). A function used to measure the ex-
pected discounted sum of rewards from following a specific policy
π from state x. The optimal value function, denoted V∗(x, t), is the
value function of the optimal policy π∗, i.e. the policy that yields
the highest value for each state x.

9. Objective Function: An optimization criteria for a Markov Deci-
sion problem.4 Expected cumulative reward is a common objective

4 Note that optimizing such an objective
function does not require the Markov
property – that property helps us find
policies efficiently.

function in reinforcement learning:

E

[
T−1

∑
t=0

γt r(xt, at)

]

Other examples include expected infinite discounted reward:

E

[
∞

∑
t=0

γt r(xt, at)

]

and immediate reward:

E [r(x0)]

The goal is to choose a policy that will minimize (if we’re using
cost functions) or maximize (if we’re using reward functions) our
objective function. Remember that the policy function just describes
the action we take at each time step, so we’re effectively finding the
best (on average) sequence of actions to complete our task.

To disambiguate some of the notation, from this point on states
will be referred to as x, transition models as T , and horizon as T.
Because we are pessimistic academics, we will deal in costs c, not
rewards.

12 draft: modern adaptive control and reinforcement learning

Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k × 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x′ will
be given the current state x and the action a. Solving deterministic

markov decision problems 13

MDPs is often traditionally posed as a search problem. There are
many approaches to solving deterministic MDPs using search, many
of which are much more efficient than generic MDP approaches.
Here are three flavors of approach that one might try:

1. The Greedy Approach: choose the action at the current time that
minimizes the immediate cost.

2. Naive Exhaustive Search: explore every possible action for every
possible state and choose the series of actions that minimizes the
total cost.

3. Pruning: Search possible actions, but remember only the cheapest
series of actions, ignoring the previously discovered paths with
higher cost.

A naive exhaustive search is often computationally ineffective as its
complexity is O(exp(T)).

An exhaustive search can produce the optimal policy at the ex-
pensive of high computational (and sample complexity) cost. While
the greedy approach is often cheap to compute, it may sometimes
produce policies that are not remotely good. The pruning approach
balances the computational cost and the quality of the resulting poli-
cies. Often it can produce a reasonably good policy in a much shorter
time compared to the exhaustive search algorithms. However, if we
care to find the optimal policy, then we need to consider all policies.

Non-deterministic problems, where the next system state is not
known with certainty, naturally suggest considering the expectation
of future rewards for any given action. One strategy, called Value It-
eration,5 discussed in the later section, calculates the expected sum of 5 The Value Iteration algorithm is also

applicable to deterministic MDPs.
In fact, we will see how to use Value
Iteration to solve deterministic MDPs in
the next section.

discounted rewards for each state under the optimal policy (the value
of that state, denoted V∗, also known as the optimal value function)
without explicitly computing the optimal policy. An optimal policy
can then just act by greedily selecting the action with the highest
value. Some alternatives will be covered later in the course, such as
Policy Iteration and Q-Learning. Policy iteration evaluates a given pol-
icy then improves upon the policy and repeats the process. We latter
consider methods which do not require an apriori known transition
model, and instead attempt to use samples of state-action pairs to
compute an optimal action from any state.

1.2 Solving MDPs

Scenario

Let’s consider the case where a robot is traversing a known maze-like
environment from a start location to a goal location. The environ-

14 draft: modern adaptive control and reinforcement learning

ment is discretized into a 2D grid. Actions are movements in the
cardinal directions. The cost is +1 (a unit of “suffering”) for being in
every state except for the goal state where the cost is 0. The goal is a
terminal “absorbing” state, so once our robot achieves the goal state
it cannot leave – the robot has achieved nirvana and the suffering is
over. Our task is to choose a sequence of actions that take the robot
from the start state to the goal state while minimizing the expected
total cost. In other words, we want to minimize

E

[
T−1

∑
t=0

c(xt, at)

]

We’ll first look at a deterministic problem where the robot will move
to the adjacent cell in the direction of the action if the cell is free:
there may be obstacles or walls in the grid, in which case the robot
is unable to transition into those states. In this simple deterministic
problem, with the cost for each state except for the goal being 1,
the optimal value at each state is simply the minimum number of
states traversed to get from that state to the goal. The optimal policy
returned at each cell is then the direction the robot should travel to
minimize the number of steps needed to reach the goal.

Figure 1.2.1: Discrete World,
Start (S), Goal (G). Obstacles are
denoted by the black squares

Dynamic Programming Formulation for Solving Deterministic MDPs

Time T− 1:
We can write this in a straightforward recursive formulation of this

problem, we start at the last timestep, t = T − 1. Here, the optimal
policy is just choosing the action with the minimal cost and the value
function at each state is the minimum cost of all actions from a given
location.

π∗(x, T − 1) = argmin
a

c(x, a)

V∗(x, T − 1) = min
a

c(x, a)

Time T− 2:
Now the values at the last timestep are the same everywhere ex-

cept at the goal. Next, consider the next-to-last step t = T − 2. Sup-
pose that we are at state x and we take action a, the total cost would

markov decision problems 15

Figure 1.2.2: Optimal Value
Function for each state at time
T − 1

be the value of the next state x′ = T (x, a) at the last timestep T − 1
plus the immediate cost of taking action a in our current state x.
Therefore, we should simply choose an action a that minimizes the
sum these two terms. The optimal value of each state is then the
minimum of the cost of the action a at current state x and plus the
optimal value of the next state x′ at the last timestep T − 1.

π∗(x, T − 2) = argmin
a

[
c(x, a) + V∗(x′, T − 1)

]
V∗(x, T − 2) = min

a

[
c(x, a) + V∗(x′, T − 1)

]

Figure 1.2.3: Optimal Value
Function for each state at time
T − 2

Time T− 3 and below
We can define a general recursion to calculate the optimal value

and optimal policy functions. For any given time t ≤ T − 2, we have:

π∗(x, t) = argmin
a

[c(x, a) + V∗(T (x, a), t + 1)]

V∗(x, t) = min
a

[c(x, a) + V∗(T (x, a), t + 1)]

Figure 1.2.4: Final value func-
tion after T steps of Value
Iteration

We can also write recursive algorithms that produce the optimal
value and the optimal policy for any state, at any time t, considering
a T-length time horizon. Algorithm 1 below describes the recursive
method that computes the best value function (cost-to-go) for a given

16 draft: modern adaptive control and reinforcement learning

Figure 1.2.5: Action at each
location using the final policy.

state x starting at time t and stopping at time T − 1.

Algorithm 1: Recursive algorithm for computing the optimal
value function

Algorithm OptimalValue(x, t, T)
if t = T − 1 then

return min
a

c(x, a)

end
else

return min
a

c(x, a) + OptimalValue(T (x, a), t + 1, T)

end

How do we compute the best policy? One important concept we
can observe from the algorithms above is that if we use the optimal
value function we never need to explicitly compute the optimal pol-
icy. Policy and value are not the same, but if the optimal value func-
tion is given, the optimal policy can be easily recovered, as shown
below:

π∗(x, t) = argmin
a

[c(x, a) + V∗(T (x, a), t + 1)] .

But what if we want to get the optimal policy while computing the
optimal value? Let’s first define an auxiliary algorithm that returns
the value function with time horizon T for a given policy π, starting
at state x. This is called policy evaluation and is described in Algo-
rithm 2.

Algorithm 2: Policy evaluation: a recursive algorithm that com-
putes the value function for a given policy

Algorithm Value(x, π, t, T)
if t = T − 1 then

return c(x, π(x, t))
end
else

return c(x, π(x, t)) + Value(T (x, π(x, t)), π, t + 1, T)
end

The above can, of course, be implemented as an in-place dynamic
program by starting from the last time-step as in Algorithm 3 as

markov decision problems 17

describe in the equations above for the robot problem.
We can also extract via a dynamic program (backwards induction)

that proceeds from the last time step Algorithm 2 to compute the
optimal policy π∗(x, t) for all states and time steps:

Algorithm 3: Algorithm for computing the optimal policy

Algorithm OptimalPolicy(x, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

π∗(x, t) = argmin
a

c(x, a)

end
else

π∗(x, t) =
argmin

a
c(x, a)+Value(T (x, a), π∗, t + 1, T)

end
end

end

Note that the complexity of computing the optimal policy via the
dynamic program above is O(|X||A|T2). However, because we are
repeatedly calculating many of these function calls, we can memoize
previously computed value functions (i.e. from future time steps)
resulting in an algorithm with complexity O(|X||A|T). Below, we’ll
explictly use backwards induction to create Value Iteration, the “in-
dustry standard” efficient means to compute the optimal value func-
tion rather than rely on ad-hoc memoization.

It is worth noting that the value function is a function of time. You
might see why by considering, for instance, a hockey game, in which
a team’s actions may vary widely depending on the time remaining.
If a team is losing and there are seconds left, they may choose to
pull their goalie off the ice and have an extra scoring player. At the
start of the game, even if losing, pulling the goalie is generally a very
unwise decision.

Backwards Induction Formulation for Solving General MDPs

Consider now MDPs that are not deterministic– that is, problems
with uncertainty in the transition model. Here we will consider opti-

18 draft: modern adaptive control and reinforcement learning

mizing the expectation over the optimal value function:

π∗(x, t) = argmin
a

[
c(x, a) + E

[
V∗(x′, t + 1)

]]
= argmin

a

[
c(x, a) + ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
,

V∗(x, t) = min
a

[
c(x, a) + E

[
V∗(x′, t + 1)

]]
= min

a

[
c(x, a) + ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
.

Applying backwards induction (dynamic programming) instead of
a recursive formulation, we get what is known as Value Iteration:

Algorithm 4: Dynamic Programming Value Iteration for comput-
ing the optimal value function.

Algorithm OptimalValue(x, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + ∑
x′∈X

p(x′|x, a)V(x, t + 1)

end
end

end

This approach now has complexity O(|X|2|A|T). However, since
we often don’t have to sum over all x ∈ X as the probability of
transitioning to those states may be 0, this typically reduces to
O(k|X||A|T), where k is the average number of neighbouring states.
In a deterministic problem, of course k = 1. If our environment is
continuous, the sums above become integrals as we are integrating
over the state space.

Infinite Horizon Problems

Recall that when we have a finite horizon, both the optimal value
function and the optimal policy are functions of time. However, as
T approaches infinity, we expect that the optimal value function
and the optimal policy no longer have such dependence on time.
Consider, for example, the maze problem above: we would expect
the value function to stabilize as the horizon T gets large. Similarly,
it would seem surprising to alter our policy at different time steps

markov decision problems 19

when there is no time limit (imagine a game that lasts forever). Exercise: Construct examples that lead
to value function divergence. Relate
to the classical convergence criteria
for series in sequences in college-level
calculus.

In some cases, the value function (optimal, or for a given policy)
will not converge in the infinite horizon case. Typically, failure of
convergence for the infinite horizon problem is caused by divergence
(for example, when the goal is unreachable), but oscillation of the
value function can also prevent the value function from converging.
A simple example of the oscillation problem is shown below:

Figure 1.2.6: Value Function
Oscillation

If the value function does converge, we are assured a stationary
feedback policy that is optimal. 6 6 Exercise: Why? Make the argument.

Rewards and Discount Factors

Thus far, we have only talked about cost functions in our examples.
Instead, imagine using a reward function, where the robot gets zero
points for each move, unless it moves into the goal, whereupon it
receives 100 points. You can see that there is very little urgency for
the robot to move towards the goal, as it can spend as many steps as
it wants wandering the state space before reaching the goal while still
receiving the same 100 points.

In order to avoid situations like this, we can apply the discount fac-
tor mentioned above. Since discount factors value obtaining rewards
sooner rather than later, they incent the robot to move to the goal as
quickly as possible.

More morbidly, discount factors can alternatively be thought of
as a way of contending with the possibility of death. 7 Under this 7 Understanding a discount factor

as imposing an effective horizon of
O(1

1−γ) and understanding it as being
the result of a transition to a terminal
state are often powerful ways to rea-
son intuitively about algorithms and
analysis in optimal decision making.

interpretation, at each time step, the robot lives with probability γ,
and dies with probability (1− γ) (goes to an absorbing state that has
0 reward or value). The optimal value function then becomes:

V∗(x, t) = min
a

[
c(x, a) + ∑

x′

[
γ
[
p(x′|a, x)V∗(x′, t + 1)

]
+ (1− γ)× 0

]]

= min
a

[
c(x, a) + γ ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
The fixed point version of the above equation (i.e., what we would
expect to hold as the finite horizon value function to converge as
T → ∞) is called the Bellman equation.

V∗(x) = min
a

[
c(x, a) + γ ∑

x′
p(x′|a, x)V∗(x′)

]

20 draft: modern adaptive control and reinforcement learning

We will explore this equation in more detail below.

Convergence and Optimal Solutions

If γ < 1, we can guarantee that the sum of rewards achieved by the
agent is finite with probability 1 (assuming the reward is as well for
each state and time) and that the optimal value function will con-
verge. For many special cases, the value function will also converge
for γ = 1, but this is not generally true for the reasons we discussed
above.

It is important to bear in mind that once the value converges, it–
and the optimal policy– becomes invariant with relation to the time.8 8 Exercise: Convince yourself this must

be true.

V∗(x, t) t→∞−−→ V∗(x) = min
a

[
c(x, a) + γ ∑

x′
p(x′|x, a)V∗(x′)

]
And the same happens for the optimal policy:

π∗(x, t) t→∞−−→ π∗(x) = argmin
a

[
c(x, a) + γ ∑

x′
p(x′|x, a)V∗(x′)

]
There are two iterative approaches for finding this convergence value.

Approach 1 In this approach, we define a small threshold ε (this
could be interpreted as a as a confidence level) and we will run the
algorithm for a time horizon that is sufficiently large so that the error
in that value will be of magnitude O(ε). Choosing T such that γT =

O(ε), i.e. T = O(log(1
ε)), ensures that our error is O(ε). We then

simply run Algorithm 4 for T time-steps, use execute the resulting
(time-varying!) policy. 9 9 It’s unclear what to do in this ap-

proach when the policy executes T or
more steps. Cycling the policy again
could be a reasonable procedure but
is ad-hoc. Of course, theoretically it
doesn’t matter because times larger
than T, by construction, are exponen-
tially damped in their significance.

Algorithm 5: Dynamic Program for creating an optimal value
function on the infinite horizon by finite horizon approximation

Algorithm OptimalValue(x, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + γ ∑
x′∈X

p(x′|x, a)V(x, t + 1)

end
end

end

markov decision problems 21

Approach 2 Alternately one can use an iterative, in-place method,
based on the Bellman equation, where the result obtained in one step
is plugged back into the equation until it converges.

Algorithm 6: Iterative approximation algorithm

for x ∈ X do
V(x) = min

a
c(x, a)

while does not converge do
for x ∈ X do

Vnew(x) = min
a

c(x, a) + γ ∑
x′∈X

p(x′|x, a)Vold(x′)

Vold(x)← Vnew(x), ∀x
return Vnew(x), ∀x

Both algorithms will return the optimal value function for all
states as the number of iterations tends to infinity. As mentioned
earlier, once the value function is known, it is possible to obtain the
policy. Thus, these algorithms also allow us to obtain the optimal
policy for every state.

Approach 1 can be demonstrated to have theoretically stronger
performance bounds if we execute the time-varying policy that re-
sults rather than keeping only the value and policy computed at
t = 0, perhaps intuitively as it is actually the optimal solution for the
finite horizon problem.10 Approach 2 is not the optimal solution for 10

any specific problem but rather is an approximate iterative method.
Nevertheless, Approach 1 can be costly: it requires a considerable
amount of extra memory, since it keeps track of all future values for
each given time step. Approach 2 initializes the value function V and
iteratively finds better approximations of that value by plugging its
current value into the solution equation. Compared with the first
approach, this approach has a slower convergence rate as a function
of the number of iterations in the worst case, but requires a smaller
amount of memory. One can also consider simple variants (covered
in [Puterman, 1994]) that maintain a single value functions and up-
date data in place.11 11 Similar to a Gauss-Seidel method for

solving linear systems.

1.3 Related Reading

[1] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. Cambridge, MA: MIT, 2005. Ch 14, pp 499-502 for most
relevant material.

[2] Andrew Moore’s slides: http://www.autonlab.org/tutorials/
mdp.html

http://www.autonlab.org/tutorials/mdp.html
http://www.autonlab.org/tutorials/mdp.html

22 draft: modern adaptive control and reinforcement learning

[3] Boumaza, A. How to design good Tetris players, Tech Report,
University of Lorraine, LORIA, 2014.

[4] Puterman, M. Markov Decision Processes: Discrete Stochastic
Dynamic Programming, 2005.

	Markov Decision Problems
	Markov Decision Processes
	Solving MDPs
	Related Reading

