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LQR: The Analytic MDP

2.1 The Linear Quadratic Regulator

In the previous chapter we defined MDPs and investigated how to
compute the value function and optimal policy at any state with
Value Iteration. While the examples thus far have involved discrete
state and action spaces, important applications of the basic algo-
rithms and theory of MDPs include problems where both states and
actions are continuous. Perhaps the simplest such problem is the
Linear Quadratic Regulator (LQR) problem.

LQR techniques are one of the most effective and widely used
methods in robotics and control systems design. The basic problem
is to identify a mapping from states to controls that minimizes the
quadratic cost of a linear (possibly time varying) system. A quadratic
cost has the form,

c(x, u) = x> Q x + u> R u, (2.1.1)

where x ∈ Rn is the state of the system, and u ∈ Rk is the control.1 1 Precisely the same as action a in the
previous section. Here we choose to
use u to denote actions in order to be
consistent with the broad literature on
control.

In the cost function, Q should be symmetric positive semi-definite
(Q = Q>, Q � 0).2 It does not have to be strictly positive definite in

2 Why? Note what would fail if Q did
not have these properties? Is symmetry
a requirement?

general.3 For example, in the cart-pole balancing problem, we only

3 For instance because sometimes we do
not require every component of the state
to reach 0 and don’t care about these
components

need the pendulum to stay upright and we do not care much about
where the cart is. However, to avoid infinite control effort, R should
be strictly positive definite (R = R>, R � 0).

Exercise

There is disagreement in the literature as to what positive definite
applied to a matrix Q means: does it imply symmetry, or just that
x> Q x > 0 for all non-zero x? Let’s see the root of this confusion:
Why can we consider Q = Q> without any loss of generality in
the LQR problem? Specifically, make the opposite assumption, and
then consider a symmetric Q that would lead to precisely the cost
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function. In a sense then, we can simply assume positive definiteness
implies symmetry as this is simpler to countenance and will lead to
equivalent results.

Continuous Control of a Discrete-Time System

An example of a continuous time-invariant system with quadratic
cost is the problem of balancing a simple inverted pendulum. The
pendulum is illustrated in Figure 2.1.1. The simple pendulum con-
sists of a bob, modeled as a point mass, and attached to a mass-less
rigid rod. Let the mass of the bob be m, the length of the rod be l,
and gravity be g. The angle between the pendulum and the y-axis θ

is controlled by the torque τ exerted at the origin. The dynamics of
this system is given by

ml2θ̈ = mgl sin θ + τ

⇒ θ̈ =
g
l

sin θ +
1

ml2 τ

≈ g
l

θ +
1

ml2 τ (2.1.2)

To find the control policy of the system, we first linearize it about

Figure 2.1.1: An inverted pen-
dulum.

the up-right configuration. Let α = g/l, and assume ml2 = 1. The
state space equations become[

θ

θ̇

]
t+1

=

[
1 + 1

2 ∆t2 · α ∆t
c · ∆t 1

] [
θ

θ̇

]
t

+

[
1
2 ∆t2

∆t

]
τ (2.1.3)

The optimal control policy can be found by formulating an MDP. For
the linearized simple pendulum,

• state: xt =

[
θ

θ̇

]
t

,

• action: ut = τ,

• cost: c(x, u) = x>Qx + u>Ru,
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• dynamics: xt+1 = Axt + But,

where A =

[
1 + 1

2 ∆t2 · c ∆t
c · ∆t 1

]
and B =

[
1
2 ∆t2

∆t

]
.

We already know how to solve this problem: Value Iteration! Let’s
look at this more closely.

2.2 Value Iteration for Linear Quadratic MDPs

Let the value function of the MDP for a finite-horizon problem with
horizon T be be Jπ(xt, t), i.e.

Jπ(xt, t) =
T−1

∑
t′=t

c(xt′ , π(xt′ , t′)). (2.2.1)

Recall the Bellman Equation for the finite horizon problem:

J∗(x, t) = min
ut

[c(xt, ut) + J∗(xt+1, t + 1)]

= min
ut

[
(xt
>Qxt + ut

>Rut) + J∗(xt+1, t + 1)
] (2.2.2)

and
J∗(x, T − 1) = min

uT−1
[c(xT−1, uT−1)] (2.2.3)

Let’s consider the recursive formulation for solving this problem.
Time T− 1:

At the last time step t = T − 1, the solution to Equation 2.2.2 is
uT−1 = 0. This is due to the fact that we are not concerned with the
next step since we already reach the time limit. Hence, any action
will increase the cost: minimizing (2.2.3) is essentially minimizing
u>T−1RuT−1. By definition, R is a positive definite matrix, and there-
fore setting uT−1 = 0 can result in minimum cost at t = T − 1.

Now let’s calculate the optimal value function J∗(xT−1, T − 1).
Since uT−1

>RuT−1 = 0, by (2.2.3),

J∗(xT−1, T − 1) = xT−1
>QxT−1

.
= xT−1

>VT−1xT−1, (2.2.4)

where VT−1 is the value matrix.4 4 A common alternate notion is to use Pt
instead of Vt to denote the value matrix.In summary, at the last time step, we have a zero control and a

value that is quadratic in the state.
Time T− 2:

The optimal value function at t = T − 2 is,

J∗(xT−2, T − 2) = min
uT−2

c(xT−2, uT−2) + J∗(xT−1, T − 1) (2.2.5)

= min
uT−2

(
xT−2

>QxT−2 + uT−2
>RuT−2 + xT−1

>VT−1xT−1

)
.

(2.2.6)
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For the sake of notational simplicity, let x = xT−2 and u = uT−2.
From the dynamics of the system, xT−1 = Ax + Bu.

J∗(x, T − 2) = min
u

{
x>Qx + u>Ru + (Ax + Bu)>VT−1(Ax + Bu)

}
(2.2.7)

Taking the partial derivative of the function to be minimized with
respect to u and setting it to 0 yields

2Ru + 2B>VT−1 Ax + 2B>VT−1Bu = 0

(R + B>VT−1B)u = −B>VT−1 Ax

u = −(R + B>VT−1B)−1B>VT−1 Ax (2.2.8)

The solution to u always exists because the inverse of R + B>VT−1B
exists since R is positive definite and B>VT−1B is at least positive
semi-definite. Let KT−2 = −(R + B>VT−1B)−1B>VT−1 A,

uT−2 = KT−2xT−2. (2.2.9)

The control uT−2 is a linear function of state xT−2 with control matrix
KT−2. The optimal value function at t = T − 2 can be found as

J∗(xT−2, T − 2) = xT−2
>QxT−2 + xT−2

>K>T−2RKT−2xT−2

+ xT−2
>(A + BKT−2)

>VT−1(A + BKT−2)xT−2

= xT−2
>(Q + K>T−2RKT−2 + (A + BKT−2)

>VT−1(A + BKT−2))xT−2
.
= xT−2

>VT−2xT−2.
(2.2.10)

Observe that in this time step, the value is also quadratic in state.
Therefore, we can derive similar results of linear control and quadratic
value for every time step prior to t = T − 2:

Kt = −(R + B>Vt+1B)−1B>Vt+1 A

Vt = Q︸︷︷︸
current cost

+ K>t RKt︸ ︷︷ ︸
cost of action at t

+ (A + BKt)
>Vt+1(A + BKt)︸ ︷︷ ︸

cost to go

(2.2.11)

and the optimal value function is,

J∗(xt, t) = xt
>Vtxt. (2.2.12)
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Algorithm 7 summarizes value iteration for LQRs:

Algorithm 7: LQR value Iteration

Algorithm OptimalValue(A, B, Q, R, t, T)
if t = T − 1 then

return Q
end
else

Vt+1 = OptimalValue(A, B, Q, R, t + 1, T)
Kt = −(R + B>Vt+1B)−1B>Vt+1 A

return Vt = Q + K>t RKt + (A + BKt)>Vt+1(A + BKt)

end

The complexity of the above algorithm is a function of the horizon T,
the dimensionality of the state space n, and the dimensionality of the
action space k: O(T(n3 + k3)).

Convergence of Value Iteration

What about the infinite horizon version of the LQR problem? That is,
we are considering

Jπ(xt) =
∞

∑
t=0

ct(xt, π(xt, t)). (2.2.13)

Recall that in the finite horizon LQR problem, Kt and Vt are com-
puted backward in time as,

Kt = −(R + B>Vt+1B)−1B>Vt+1 A

Vt = Q + K>t RKt + (A + BKt)
>Vt+1(A + BKt).

(2.2.14)

One natural idea is to keep applying (2.2.14) until Kt and Vt con-
verge to a fixed point. The associated question is thus, do Kt and Vt

always converge? And further, if they do not always converge, when
do they actually converge? The answer is, Kt and Vt converge if the
system is so called stabilizable,5 and they converge to the solution to 5 Brian D. O. Anderson and John B.

Moore. Optimal Control: Linear Quadratic
Methods. Prentice-Hall, Inc., 1990

the Discrete Algebraic Ricatti Equation (DARE): 6

6 The conditions for LQR to converge
are effectively identical to that of any
other value iteration problem. It’s
enough here that we can asymptotically
drive all the state variables to 0.

V = Q + K>RK + (A + BK)>V(A + BK)

K = −(R + B>VB)−1B>VA (2.2.15)

Moreover, the K and V that solve the DARE indeed yield the optimal
policy for the infinite horizon LQR problem. We can view V as a
combination of the cost of current state and control, along with the
future cost. If the system is not stabilizable, for example, a system
of two motors controlling two inverted pendulums with one of the
motors broken, then Kt and Vt no longer converge. However, the
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value iteration will still return the policy that can get the system
to work as well as possible by using the good motor to attempt to
stabilize the system. On the infinite horizon, it may, of course lead
to a diverging value estimate– in essence, the issues that happen in
finite state spaces with non-converging value functions can happen in
solving the Ricatti equation. 7 7 There are linear-algebraic methods

to solve the Ricatti equations as well
as simply the natural Value-Iteration
backup procedure; these can be more
computationally efficient, but are rarely
required

2.3 Extensions of LQR

In the following sections, we continue to expand the domain of appli-
cability of the general strategy for solving LQR problems developed
above. The basic techniques that we will augment LQR with include

1. Allowing the system to be time varying

2. Allowing general affine systems (via homogenous coordinates or
direct derivation)

3. Moving from controls to “deviations” in control

4. Iteratively re-linearizing

We visit each of these incrementally, as it’s useful to see each addi-
tion, and end up with a general algorithm for a wide class of control
problems.

Tracking Trajectories with LQR

The method described in Algorithm 7 will not work for a pendulum
“swing up” problem, since the system dynamics at θ = 0◦ (unstable)
and θ = 180◦ (stable) are qualitatively different. Linearization will
fail as the linearized model (2.1.3) is a good approximation of the
non-linear dynamics only at a small region around θ = 0◦.

Given a trajectory, possibly recorded from an expert demonstra-
tion, (xt, ut) from θ = 180◦ to θ = 0◦ (see Fig 2.3.1), one might
imagine that it could simply be replayed to balance the inverted
pendulum. However, this doesn’t work in practice due to modeling
error– moreover, the same sequence of controls is unlikely to produce
exactly the same behavior when played twice on a real system due
to minor variations in the system. However, a reference trajectory
can still be useful. One way to use an expert trajectory in presence of
uncertainty, is to use LQR tracking, which we describe below. Be-
fore describing how tracking works, we first introduce several minor
variations on the LQR approach, including LQR for Linear Time Vary-
ing dynamical systems, Affine Quadratic Regulation, and LQR with
stochastic dynamics.
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Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = −(B>t Vt+1Bt + Rt)
−1B>t Vt+1 At (2.3.3)

Vt = Qt + K>t RtKt + (At + BtKt)
>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

[
x
1

]
(2.3.6)

x̃t+1 =

[
At xoff

t
0 1

]
x̃t +

[
Bt

0

]
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>t Q̃t x̃t + u>t Rtut, where the
choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates
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Tracking

There are two natural formulations for a tracking cost function:

ct(xt, ut) = (xt − x∗t )
>Q(xt − x∗t ) + (ut − u∗t )

>R(ut − u∗t ) (2.3.8)

ct(xt, ut) = (xt − x∗t )
>Q(xt − x∗t ) + u>t Rut (2.3.9)

where x∗t and u∗t are the nominal trajectory and nominal control
input obtained from the expert (not necessarily optimal ones!). Q
penalizes the deviation from the nominal trajectory and R penalizes
either the deviation from the nominal controls or is just a penalty on
the control (e.g. lots of actuation is bad).

Expanding the term corresponding to state error in the cost func-
tion:

(xt − x∗t )
>Q(xt − x∗t ) = x>t Qxt + x∗t

>Qx∗t︸ ︷︷ ︸
constant at time t

− 2x∗t
>Q︸ ︷︷ ︸

constant at time t

xt

= x>t Qxt + dt − 2q>t xt,

where dt
.
= x∗t

>Qx∗t and qt
.
= Qx∗t . Next, we choose a Q̃t defined as:

Q̃t =

[
Q −qt

−q>t dt

]
,

such that the state error term of the cost function can be formulated
as x̃>t Q̃t x̃t, where x̃t is the homogeneous coordinates in (2.3.6). Note
that dt is a constant, which only shifts the cost function in an uninter-
esting way.

For cost functions with the control error term of the form (ut −
u∗t )
>R(ut − u∗t ), let ũt = (ut − u∗t ). Then the corresponding term of

the cost function can be modified as ũ>t Rũt. In order to use ũt instead
of ut in the cost function defined as in Eq. 2.3.8, the dynamics needs
to be modified as follows:

x̃t+1 =

[
At xoff

t + Btu∗t
0 1

]
x̃t +

[
Bt

0

]
ũt. (2.3.10)

The modified cost function is:

ct(x̃t, ũt) = x̃>t Q̃t x̃t + ũ>t Rũt. (2.3.11)

Solving the LQR for the system using the above cost function

ũt = −K̃t x̃t.

Subsequently ut is obtained as ut = ũt + u∗t .
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2.4 Iterative LQR (iLQR)

So far, we have seen how to use LQR to solve problems with linear
(or affine) dynamics and quadratic costs. However, real world sys-
tems will only rarely be close to linear. 10 10 There is a well-known saying among

control theorists,

Classifying systems as linear
and nonlinear is like classify-
ing the Universe as bananas
and non-bananas.

Differential Dynamic Programming (DDP) 11 is a general approach 11 D. H. Jacobson and D. Q. Mayne.
Differential Dynamic Programming.
Elsevier, 1970

to using quadratic approximations of the value function to solve a
broader class of control problems than merely linear-Gaussian. It-
erative LQR (iLQR) is a simplified variant of DDP, an approach that
repeatedly solves LQR (actually affine!) problems to solve for a lo-
cally optimal change to a trajectory and a controller around that. The
idea of iLQR is very closely related to Newton’s method (where we
first approximate the objective function to a quadratic function, mini-
mize it, and iterate until convergence). In iLQR, we first approximate
the dynamics with an affine model and approximate the cost func-
tion with a quadratic function. Crudely speaking, we then solve the
LQR problem for the resulting approximate problem, and iterate the
process until convergence.

The algorithm

The general iLQR strategy is as follows:

1. Propose some initial (feasible) trajectory {xt, ut}T−1
t=0

2. Linearize the dynamics, f about trajectory:

∂ f
∂x

∣∣∣∣
xt

= At,
∂ f
∂u

∣∣∣∣
ut

= Bt

Linearization can be obtained by three methods:

(a) Analytical: either manually or via auto-diff, compute the correct
derivatives.

(b) Numerical: use finite differencing.

(c) Statistical: Collect samples by deviations around the trajectory
and fit linear model.

3. Compute second order Taylor series expansion the cost func-
tion c(x, u) around xt and ut and get a quadratic approximation
ct(x̃t, ũt) = x̃>t Q̃t x̃t + ũ>t R̃tũt where the x̃t, ũt variables represent
changes in the proposed trajectory in homogenous coordinates. 12 12 We haven’t derived using homoge-

neous coordinates in control; it’s essen-
tially equivalent to simply completing
the square and finding a “nominal”
control. Instead of pursuing yet an-
other step-wise generalization, in the
appendix to these notes presents the
general derivation.

4. Given {At, Bt, Q̃t, R̃t}T−1
t=0 , solve an affine quadratic control prob-

lem and obtain the proposed feedback matrices (on the homoge-
neous represenation of x).
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5. Forward simulate the full nonlinear model f (x, u) using the com-
puted controls {ut}T−1

t=0 that arise from feedback matrices applied
to the sequence of states {xt}T−1

t=0 that arise from that forward sim-
ulation.

6. Using the newly obtained {xt, ut}T−1
t=0 repeat steps from 2.

Issues with iLQR

• Q and R can be indefinite when the actual cost function is not
convex. Hacks that are typical in the literature include:

– Projection: Q = U Σ︸︷︷︸
set negative Eigenvalues to 0

U>. Formally, this

can be shown as finding the closest (in L2 sense cost matrix that
actually is PSD.

– Regularize: Increase the diagonal values until Q becomes posi-
tive definite: Q = Q + λI

• Trust regions: Sometimes the approximation of the cost function
is poor and in such cases its a good idea to restrict the step size
(deviation from the trajectory of the previous iteration) while
executing the control. This can be accomplished in the following
ways:

– interpolate between the control at current iteration and the
previous iterations

– Modify cost to penalize derivation from the trajectory of the
previous iteration:

c̃ = c+ α · (penalty for deviation from the previous trajectory in controls or states)

These last known as control and state damping are extremely com-
mon in real-world implementations.

• Some notes:
LQR recieved significant practical criticism in the 1970s as it was
difficult to prevent the resulting synthesized controllers from ex-
citing dynamics that were under-modeled. Without care, LQR
(particularly using filtered estimates of the true state, rather than
“oracle” access to the true state) will often generate, “stiff”, high
frequency controls that are not robust. Some common modifi-
cations to damp high frequency control from being generated
include:

– Penalize changes in control from previous control. This is to
ensure that the control is smooth. Higher order of smoothness
can be obtained by passing the control signal through a filter,
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modeled in the system dynamics, and then using the output of
that as “effective” control input for the system.

– More generally, we can implement a filter on the execute control
dynamics by storing previous controls in the state vector and
penalizing any linear operation on these.

It’s often useful to model latency by a simple "loading" controls
into states by including that delay in the dynamics:[

xt

ut−1

]
=

[
A B
0 0

] [
xt−1

ut−2

]
+

[
0

ut−1

]
. (2.4.1)

This method for modeling delay is crude but effective. More so-
phisticated approaches include providing an immutable region of
controls are often used in receeding horizon control.

2.5 Differential Dynamic Programming (DDP)

The original, fancier version of approximate value iteration for locally
linear quadratic systems is called differential dynamic programming
(DDP). iLQR and DDP are very similar, the difference being that
iLQR assumes a simpler linear model for the system dynamics, while
DDP uses a full quadratic model and then truncates any terms that
are higher than second order in the value function expansion. The
result is that DDP provides a correct-to-second-order expansion
of the value function. iLQR is slightly simpler to implement than
DDP and often provides similar or better results empirically for less
computation.

Figure 2.5.1: Funnels can be a
metaphor for controllers, and
you can think of composing
funnels that cover different
parts of the space of states.

DDP (or iLQR) builds a second order approximation of the value
function, giving a quadratic bowl at every timestep. This ends up
acting like a series of funnels [2]. When you are in the area covered



34 draft: modern adaptive control and reinforcement learning

by a funnel, you are pulled toward the optimum. You can think of
composing funnels such that one funnel dumps you out into another
funnel. If you cover the entire space with funnels, then you can imag-
ine that each one is a controller that is good in a certain section of
the space (See Figure 2.5.1). With iLQR, we built a quadratic value
function about a particular trajectory, but you can imagine starting
somewhere else. If you can get from that starting point into the re-
gion covered by your value function, then you already know what to
do from there. Chris Atkeson wrote a classic paper on this subject,
in which he looks at covering the state space with DDP policies [3].
Imagine an inverted pendulum: there will be some controller that is
good for the near-vertical case. One can then have other controllers
covering other parts of the space, and each controller gets closer to
the set of states it knows how to handle, funneling states towards the
goal.

LQR with Stochastic Dynamics

The treatment of the Linear Quadratic Control problem up until
now has assumed that the dynamics of the system are deterministic:
the next state of the system can be determined precisely from the
previous state and the control input.

xt+1 = Axt + But (2.5.1)

Figure 2.5.2: Robot in grid
world showing optimal pol-
icy for deterministic (red) vs.
stochastic (green) motion.

It is not at all clear, however, that the policy built for the deter-
ministic case is the policy that you would follow if you knew there
was noise. For example, imagine a robot in a grid world (See Figure
2.5.2). The robot is positioned on the opposite side of two obstacles
from the goal (pot of gold). Hitting an obstacle is catastrophic for the
robot, but there is just enough space for the robot to drive between
the two obstacles to reach the goal. If the robot’s motion is determin-
istic, then the best policy is to drive between the obstacles. But if the
robot’s motion is stochastic, and with a 10% probability, the robot
moves in a random direction instead of the commanded direction,
then the best policy is to avoid walking the tightrope between the
dangerous obstacles, and to instead go around the obstacles.
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We can extend LQR to handle a simple case of stochastic dynamics
and derive the optimal policy for this case. We will assume that at
each time step, a zero mean Gaussian perturbation affects the state 13.

xt+1 = Axt + But + εt (2.5.2)
13 Note that the noise that we are
adding is motion model noise. We are
not considering a non-trivial observa-
tion model here.

where εt ∼ N (0, Σ). xt+1 can also be written as

xt+1 ∼ N (Axt + But, Σ) (2.5.3)

Recall that for the deterministic case, the optimal policy at time t,
π∗t , is given by finding the action that minimizes the sum of action
cost and cost-to-go from the resulting state

π∗t = argmin
ut

c(xt, ut) + J∗(xt+1, t + 1) (2.5.4)

The problem is that in the stochastic case, the next state xt+1 can
not be predicted exactly. As with value iteration, the solution is to
replace the optimal cost-to-go J∗ by the expected value of J∗ given
the previous state and selected action. The expression for π∗t thus
becomes

π∗t = argmin
ut

c(xt, ut) + E [J∗(xt+1, t + 1)] (2.5.5)

The expectation term in this expression is the integral

E [J∗(xt+1, t + 1)] =
∫

X
x>t+1Vt+1xt+1N (xt+1; Axt + But, Σ)dxt+1

(2.5.6)
This integral belongs to a class of integrals called Gaussian Integrals
and has a simple closed form solution.∫

(x− b)>P(x− b)N (x; µ, Σ)dx = (µ− b)>P(µ− b) +Tr [PΣ] (2.5.7)

substituting we get

E [J∗(xt+1, t + 1)] = (Axt + But)
>Vt+1(Axt + But) + Tr [Vt+1Σ]

(2.5.8)
or, since J∗(xt, t) = x>t Vtxt,

E [J∗(xt+1, t + 1)] = J∗(Axt + But, t + 1) + Tr [Vt+1Σ] (2.5.9)

Thus using the expectation of the optimal cost-to-go in the stochastic
case gives almost the same expression as using the value of cost-to-
go in the deterministic case. The only difference is the trace term
which is a constant when Σ is fixed or depends only on t. Since all
the values under the argmin are shifted by the same constant value,
the policy will remain unchanged by the presence of noise, even
though the value function has changed. The new trace term added to
the cost-to-go can be considered the cost incurred due to uncertainty.
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It should be emphasized that this analysis only holds when Σ is
independent of the control u. In many real settings, this does not
hold. For example, on a robot, the larger the motion the larger the
induced uncertainty in position is.
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[3] C. G. Atkeson, “Using Local Trajectory Optimizers to Speed Up
Global Optimization”, Proceedings of Neural Information Process-
ing Systems, December 1993.

2.7 Appendix: Derivation of the General ILQR Backup steps

The following provides a detailed derivation of the iLQR approach.
At each iteration of the algorithm, we execute a proposed current
policy to get a trajectory. That we compute the dynamic program
below to provide an update to that policy. This is iterated until con-
vergence.
Given the true dynamics F, we can find the Taylor expansion around a proposed trajectory (xt?, ut?):

xt+1 = A(xt − xt?) + B(ut − ut?) + F(xt?, ut?)

⇒ xt+1 − xt+1? = A(xt − xt?) + B(ut − ut?)

zt+1 = Azt + Bvt

where we define zt = xt − xt? as the change to the state trajectory and vt = ut − ut? as the change to the control
trajectory.

Similarly, given the true cost function C, the second order taylor expansion is:

ct(xt, ut) =
1
2
[(xt − xt?)

T , (ut − ut?)
T ]H

[
(xt − xt?)

(ut − ut?)

]
+ gT

[
(xt − xt?)

(ut − ut?)

]
+ C(xt?, ut?)

=
1
2
[(xt − xt?)

T , (ut − ut?)
T ]

[
Q P
PT R

] [
(xt − xt?)

(ut − ut?)

]
+ [gT

x , gT
u ]

[
(xt − xt?)

(ut − ut?)

]
+ C(xt?, ut?)

=
1
2
(xt − xt?)

TQ(xt − xt?) + (xt − xt?)
T P(ut − ut?) +

1
2
(ut − ut?)

T R(ut − ut?) + gT
x (xt − xt?) + gT

u (ut − ut?) + c

and thus that we can right down a cost function in the changes to state/action as:

⇒ c(zt, vt) =
1
2

zT
t Qzt + zT

t Pvt +
1
2

vT
t Rvt + gT

x zt + gT
u vt + c
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Dynamic Programming (Value-Iteration) Backup

Assume we have now a control policy of the form of a “feedforward” update term kt and feedback term KT that is a
linear controller response to “errors” in zT :

vT = KTzT + kT , (2.7.1)

Inductively, we assume the next-state value function (i.e. of the future timestep) can be written in the form,

JT+1 =
1
2

zT+1VT+1zT+1 + GT+1zT+1 + WT+1. (2.7.2)

Since

zT+1 = AzT + BvT (2.7.3)

= AzT + B(KTzT + kT) (2.7.4)

= (A + BKT)zT + BkT , (2.7.5)

we can write, JT+1 as:

JT+1 =
1
2
((A + BKT)zT + BkT)

TVT+1((A + BKT)zT + BkT) + GT+1((A + BKT)zT + BkT) + WT+1 (2.7.6)

=
1
2

zT
T(A + BKT)

TVT+1(A + BKT)zT +
1
2

kT
T BTVT+1BkT + kT

T BTVT+1(A + BKT)zT (2.7.7)

+ GT+1(A + BKT)zT + GT+1BkT + WT+1 (2.7.8)

=
1
2

zT
T(A + BKT)

TVT+1(A + BKT)zT +
(

kT
T BTVT+1(A + BKT) + GT+1(A + BKT)

)
zT (2.7.9)

+ GT+1BkT +
1
2

kT
T BTVT+1BkT + WT+1 (2.7.10)

Additionally, we can write the cost cT(zT , vT) as:

cT =
1
2

zT
TQzT + zT

T PvT +
1
2

vT
T RvT + gT

x zT + gT
u vT + c + JT+1 (2.7.11)

=
1
2

zT
TQzT + zT

T P(KTzT + kT) +
1
2
(KTzT + kT)

T R(KTzT + kT) + gT
x zT + gT

u (KTzT + kT) + c (2.7.12)

=
1
2

zT
TQzT + zT

T PKTzT + kT
T PTzT +

1
2

zT
TKT

T RKTzT +
1
2

kT
T RkT + kT

T RKTzT + gT
x zT (2.7.13)

+ gT
u KTzT + gT

u kT + c

=
1
2

zT
T

(
Q + 2PKT + KT

T RKT

)
zT +

(
kT

T PT + kT
T RKT + gT

x + gT
u KT

)
zT +

1
2

kT
T RkT + gT

u kT + c (2.7.14)

Then, we can write JT = cT(zT , vT) + JT+1 = 1
2 zT

TVTzT + GTzT + WT by combining like terms from above, where

VT = Q + 2PKT + KT
T RKT + (A + BKT)

TVT+1(A + BKT) (2.7.15)

GT = kT
T PT + kT

T RKT + gT
x + gT

u KT + kT
T BTVT+1(A + BKT) + GT+1(A + BKT) (2.7.16)

WT =
1
2

kT
T RkT + gT

u kT + c + GT+1BkT +
1
2

kT
T BTVT+1BkT + WT+1 (2.7.17)

We find the control policy by minimizing JT with respect to vT .

vT = min
vT

cT + JT+1 (2.7.18)

= zT
T PvT +

1
2

vT
T RvT + gT

u vT +
1
2
(AzT + BvT)

TVT+1(AzT + BvT) + GT+1(AzT + BvT) (2.7.19)

=
(

zT
T P + zT

T ATVT+1B
)

vT + (GT+1B + gT
u )vT +

1
2

vT
T

(
R + BTVT+1B

)
vT (2.7.20)

(2.7.21)
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Taking the derivative with respect to vT and setting equal to 0, we get,

0 =
(

PT + BTVT+1 A
)

zT + (BTGT
T+1 + gu) +

(
R + BTVT+1B

)
vT (2.7.22)

vT = −
(

R + BTVT+1B
)−1 (

PT + BTVT+1 A
)

zT −
(

R + BTVT+1B
)−1

(BTGT
T+1 + gu) (2.7.23)

= KTzT + kT (2.7.24)

where KT = −
(

R + BTVT+1B
)−1 (

PT + BTVT+1 A
)

and kT = −
(

R + BTVT+1B
)−1

(BTGT
T+1 + gu).

Plugging this resulting policy back in to the expression for VT , GT and WT completes the dynamic programming by
providing us a quadratic form for the value function. (Note that WT and c are actually irrelevant as they are constants
in the optimization)
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