
4
Practical Optimization: Constraints and Games

4.1 Introduction to Games and Constraints

This lecture focuses on a class of techniques for managing constraints in
optimization problems that arrive either in machine learning or control. The
below set of techniques are ones we’ve found quite helpful in practice.

There are a few general classes of approach to managing constraints and
the details of which is “best” depends on requirements on speed and on
quality of the required constraint satisfaction and final cost. There are strong
inter-relations between them, but certain ones are usually preferred. The
lecture below assumes an equality constraint, but each result can be derived
for inequality constraints.

4.2 Reparameterization

Arguably the “simplest” technique, when viable, is reparameterization—
i.e. reformulate the variables so the constraint must be satisfied. We might
call that the physics way: if temperature is empirically lower bounded, re-
expresses in 1/T, or if velocity is upper-bounded, re-express dynamics to
enforce relativistic constraints. This is also the critical technique of the beau-
tiful theory of Generalized Linear Models, where, e.g., we express binomial
probabilities as unconstrained logits pushed through a logistic function. It’s
also fundamental to the “shooting” methods of trajectory optimization and
control like iLQR, where dynamic constraints are explicitly formulated by
forwarding simulating controls (that may exist only to satisfy the reparame-
terization).

Reparameterization naturally allows us to express uncertainty over, e.g.
controls, because we can use the Laplace approximation in the reparameter-
ization to get meaningful uncertainty estimates. 1 For instance, in a control 1 B. D. Ziebart, J. Andrew Bagnell, and

A. K. Dey. Modeling interaction via the
principle of maximum causal entropy.
In Proceedings of the 27th International
Conference on Machine Learning, 2010

application, if we reparameterize a positive-only velocity components as
speed = elog_speed, we can produce posterior confidence intervals on speed
that satisfy the constraints as well by passing through the reparameterization.
Reparameterization equally allows feedback gains in techniques like iLQR to
continue to be useful.

Slow convergence can result as we get close (or initialize unfortunately
close), as the effect of reparameterization (and a cost on that variable) be-
comes like a barrier function and leads to very ill-conditioned problem and
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effectively cost “plateaus”. We have seen this behavior as a general issue
with interior point methods, although that observation is a frequent point of
contention. Also, for optimal control problems, reparamertization typically
buries more non-linearity in the state transition dynamics and this may be
ignored by some methods (e.g. iLQR, in contrast with classical Differential
Dynamic Programming).

4.3 Lagrange (Primal-Dual) Methods

We’ll begin by considering the problem of minimizing f (x) subject to the
constraint g(x) = 0.

Lagrange methods convert constraints into a saddle point problem– i.e.
a game where the “dual” (multiplier player) attempts to take advantage of
any violation of constraints. We must find solutions where the dual player
can’t win, and if we do, we guarantee satisfying the constraints. A surprising
range of practical methods for constrained optimization look like “apply
some simple optimization strategy to the dual problem”. 2 2

Gradient/ExpGrad on multipliers

Defining the dual:
D(λ) = min

x
f (x)− λT g(x),

it’s straightforward to take
maxλD(λ)

and simply compute sub-gradients (assuming, e.g. f (x) is convex, otherwise
we’re estimating a still more general notion of derivative and an applica-
tion of Danskin’s theorem) of D. Note this is “easy” as ∇λ minx L(x, λ) =

∇λL(x∗, λ) where x∗ = argmin f (x)− λT g(x). (Where this is being evaluated
at some specific λ!)

We can then simply run our favorite derivative based optimizer (heavy-
ball momentum, sub-gradient, Exponentiated Gradient Descent, etc.) on this
dual. We note the problem may very well not be strongly concave in λ: that
is, we may have essentially no curvature in λ– necessitating slow step size
decreases, controlled/stable optimization in general, and potentially even
uphill steps. 3 3 We note in passing the the subgradient

method is equivalent to two related,
natural algorithms: a) Iteratively lin-
earizing the objective function and
providing a shrinking regularization
to 0. b) Iteratively linearizing the ob-
jective function and regularizing to the
previous location.

These are special cases of two differ-
ent, stable, optimization strategies (a)
FTRL (Follow the Regularized Leader)
and (b) Mirror Descent (Proximal De-
scent/Trust Region) that are popular in
game solving and online learning, and
under linearization happen to collapse
to the same classical gradient descent.

To see (b), note:

argmin
x
∇ f (xlast)

T x +
α

2
||x− xlast||2

is solved by,

x = xlast −
1
α
∇ f (xlast),

which is gradient descent with learning
rate 1

α .

Regularized Lagrangian Optimization / Penalty Methods

A natural way to frame the optimization problem in light of the potential
instability in optimizing the dual is to consider the regularization (see side
note) that is implicit in gradient descent. That is, we can consider the Regu-
larized Lagrangian (ReLa):

maxλD(λ) +
α

2
λ2

This form ensures compact level sets for the optimization and lets us
actually solve the problem without solutions in λ running away to infinity.

I’ll assume below that with regularization we can safely assume strong
duality for the problem. (That’s very much unnecessarily strong, as we can
converge to a dual solution anyway, but it saves time/thought.)
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Given strong duality, we can swap the min and max and solve the dual:

min
x

maxλ f (x)− λT g(x)− α

2
λ2

But note that the inner maximization is now closed-form. That is, if com-
pute ∇λ, we get back:

λ = − 1
α

g(x)

Substituting in, we can now eliminate λ and solve the unconstrained prob-
lem:

min
x

f (x) +
1

2α
g(x)2

That’s particularly interesting, as what’s classically known as a penalty
method arises as simply the optimal solution of a regularized version of the
Lagrangian; penalty methods are Lagrange methods in disguise. Shrinking
the Lagrange regularization is simply scheduling the penalty, and we can
see that this is a sound method, and can even compute the sub-optimality of
the constraints from it. Finally, it provides an estimate of the dual variables
directly via the relation λ = − 1

α g(x).
The only reason not to take regularization to 0 is that we have poor con-

ditioning and extremely large gradients that which implies optimization
methods are likely suffer in the way barrier methods do— but it’s super fast
and easy to implement.

Note further that we can regularize the Lagrange multipliers in many
ways– for instance, by (unnormalized) entropy regularization. Each leads
to a dual penalty method (in this case an exponential penalty method).
Performance of these depends a great deal on the underlying optimizer as
well as our prior beliefs on the multipliers λ. If the Lagrange multipliers are
expected to have small L2 norm, we would expect classical squared-norm
regularization to be good. Entropy regularization, by contrast, we might
expect will work well when there are many constraints, but a sparse set of
multipliers are sufficient to satisfy the constraints. Adapting the literature
on such dual penalty methods is likely valuable to taking best advantage of
these techniques.

L∞ ReLa / “Exact” Penalty

An interesting exercise is to consider the Regularized Lagrangian using the
αmaxi|λi| as the regularizer. A quick calculation reveals that this leads to a
penalty method that is solving:

min
x

f (x) +
1
α
|g(x)|

This form is related to that given by the Support Vector Machine primal,
where the constraint we attempt to enforce correct labelings. The classic
hinge-loss here arises from an inequality exact penalty method on achieving
the correct label, although this is not usually how the method is described.
In practice, non-trivial regularization of the dual variables in an SVM is
assumed to prevent over-fitting.

Note however, that this form, while excellent for sub-gradient based
optimizers (AdaGrad, etc.) popular in machine learning, fails to be strongly
convex (or smooth) and thus is poorly optimized by Newton-style methods.
The advantage of this method is that a finite value of 1

α is sufficient to achieve
the constraint precisely in contrast with squared norm penalty approach.
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Augmented Lagrangian Optimization / Mirror Descent

Using Mirror Descent, where we iteratively regularize around the last so-
lution for the dual variable rather than around 0, provides a powerful gen-
eralization of penalty methods. We begin with an estimate of the Lagrange
multipliers, λ0. As with ReLa above, we consider a regularized dual of the
Lagrangian:

min
x

maxλ f (x)− λT g(x)− α

2
(λ− λi)

2

Note again that the inner optimization (with x fixed) is closed form (in
terms of the next λ to choose):

λ = λi −
1
α

g(x)

and by substitution we can eliminate λ and solve the regularized dual as a
simpler optimization in x:

min
x

f (x)− λT
i g(x) +

1
2α

g(x)2

In contrast with the penalty method, we can simply iterate. We update λ

with
λi+1 = λi −

1
α

g(x),

and re-solve the Augmented Lagrangian (AuLa) 4 problem above. 4

It’s interesting to ask why we might bother with this form, when the
penalty method is itself sufficient. A general theme in optimization is that it
can be more efficient to phrase a problem as a saddle-point-finding exercise
rather than as a difficult, pure optimization. AuLa takes the penalty method
approach and moves it back towards a game, managing to inherit both the
simplicity of each as well as better conditioning than the single optimization
solved in a penalty method. The general strategy of replacing a hard opti-
mization problem with a game-derived sequence of such is a powerful area
of research and the more detailed variant of that, the strategy of regularizing
the dual parameters 5 to ensure closed form solution is one that seems not 5

fully exploited in the literature.

Inequality Variant of Mirror Descent on Lagrangian

Perhaps the classic way to handle inequalities in the Lagrange methods
above is to add a slack variable with a bound constraint z ≥ 0. However, we
can actually derive variants directly using the technique above as well.

We’ll begin by considering the problem of minimizing f (x) subject to the
constraint g(x) ≥ 0. Following the logic above and applying duality, we can
form a regularized or augmented Lagrangian as:

min
x

maxλ≥0 f (x)− λT g(x)− α

2
(λ− λi)

2

Solving for λ (note this happening component-wise in λ and I’m glossing
over that) gives us,

λ = max(0, λi −
g(x)

α
)

Eliminating λ, we have, again component-wise, but I’m too lazy to index into
λ and thus I’m treating it like it’s a scalar/single constraint: If (λi − g(x)

α ) >
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0, we are minimizing

f (x)− λT
i g(x) +

g(x)2

2α

and otherwise,

f (x)− αλ2
i

2
This result is continuous and differentiable, but it is not twice so, so YMMV.
The primal problem can also have achieve a minima with a negative objective
value, which is somewhat annoying. Again we iterate the algorithm by re-
estimating

λi+1 = max(0, λi −
g(x)

α
)

and solving again for x.

4.4 Projected Gradient

A remarkably simple method, which is often very useful in machine learn-
ing, is to take a gradient step and then project (in the sense of finding the
nearest location in the constraint set in Euclidean norm) onto the constraint
set. If constraints are simple and convex, this method will accelerate conver-
gence relative to the unconstrained problem, at least for convex losses. 6 This 6 M. Zinkevich. Online convex pro-

gramming and generalized infinitesimal
gradient ascent. In Proceedings of the
20th International Conference on Machine
Learning (ICML), 2003

is because we guarantee each projection step takes us closer to the optima in
the set.

This method fundamentally relies upon the projection step being simple:
for instance onto a unit ball or with bound constraints. Both of these are
trivially implemented as normalization and thresholding, respectively. These
style of constraints are quite common on ML applications like support vector
machines (SVMs) 7. Unfortunately, the simplicity of the Projected Gradient 7 N. Ratliff, J. A. Bagnell, and M. Zinke-

vich. (Online) subgradient methods for
structured prediction. In Proceedings of
the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2007

approach is compromised when using methods (for instance, Gauss-Newton
or AdaGrad) that rely on a non-trivial metric: the projection must take place
using the same metric (i.e. the same notion of closeness) to ensure good be-
havior. One can convince one self of counter-examples to proper convergence
using Euclidean projection combined with Newton steps.

4.5 Related Reading

[1] Bertsekas, D. Nonlinear Programming: 3rd Edition. Athena Scientific,
2016.

[2] Toussaint, M. A tutorial on Newton methods for constrained trajectory opti-
mization and relations to SLAM, Gaussian Process smoothing, optimal control,
and probabilistic inference. In Geometric and Numerical Foundations of
Movements, Springer, 2017.
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