
5
Policy Iteration

We saw in previous notes that value iteration can be used to find an optimal
policy efficiently. Interestingly, in later rounds of value iteration, the best
action at each state rarely changes. Put in other words, the policy implicitly
defined by the value function appears to converge more rapidly than the
value function itself. This insight suggests approaches that attempt to update
an explicit estimate of the optimal policy rather than only an explicit estimate
of optimal value function (with the policy implicit).

Policy Evaluation

In order to update the policy, we need some way to measure its performance.
Fortunately, we have a way to do this: we can simply compute the value
function for a fixed policy. We can use the value function Vπ(x, t) to denote
the expected cost-to-go of a policy π in state x at time t. The process of find-
ing Vπ is called policy evaluation. We can use a policy evaluation algorithm to
tell us how good one policy is to compare to others or suggest modifications.

Recall from the first chapter that we can compute the value function for a
given policy π through the following algorithm:

Algorithm 8: Dynamic Program for creating an optimal value
function on the infinite horizon by finite horizon approximation

Algorithm EvaluatePolicy(x, π,T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = c(x, π(x, t))
end
else

V(x, t) = c(x, π(x, t)) + γ ∑
x′∈X

p(x′|x, π(x, t))V(x, t)

end
end

end
return V

If π is stationary (not a function of time) 1 then as t → ∞ the value 1 Notably under assumptions that en-
sure convergence of the value function.
If γ < 1 or, if, with probability 1, π
enters a terminal state having zero cost.

function converges to fixed point satisfying the following Bellman Equation:

Vπ(x, t) t→∞−−→ Vπ(x) = c(x, π(x)) + γ ∑
x′

p(x′|x, π(x))Vπ(x′)

48 draft: modern adaptive control and reinforcement learning

Note that this equation is linear in Vπ(x). While this can be solved via pol-
icy iteration, an alternate way to compute this is to solve a system of linear
equations.

Let
−→
cπ and

−→
Vπ be vectors of length |X| listing the cost and cost-to-go,

respectively for ∀x ∈ X.

−→
Vπ = −→c + γPπ−→Vπ (5.0.1)

⇒ (I − γPπ)
−→
Vπ = −→c (5.0.2)

where Pπ is the row stochastic transition matrix (its rows sum to 1) given the
the fixed policy π

Pπ =


p(x0|x0, π(x0)) p(x1|x0, π(x0)) . . .

...
...

...
p(x0|xn, π(xn)) p(x1|xn, π(xn)) . . .

 (5.0.3)

The operation of multiplying by Pπ is the equivalent of calculating expecta-
tion. This is a linear equation in

−→
Vπ and its solution is

−→
Vπ = (I − γPπ)−1−→c (5.0.4)

For γ < 1 this equation always has a solution (the eigenvalues of Pπ have
modulus always less than one, so I − γPπ is always invertible).

Policy Improvement

If someone hands you a policy π, it is natural to want to see if it is optimal,
and if not, to improve it (see Figure 5.0.1). Then, the question becomes, how
can we tell that whether the policy is optimal? And, more importantly, if
the policy is not optimal, “how can we modify the policy so that it becomes
better, and eventually, optimal?” (See Figure 5.0.1) Policy improvement seeks to
answer these questions.

Figure 5.0.1: The left image
shows a non-optimal policy
(green arrows). The right image
shows how the policy could
be improved by changing the
action taken on a state-by-state
basis. The new policy is still not
optimal and could be improved
by another round of policy
iteration.

In the policy improvement step, the policy is modified as follows ∀x ∈ X:

π′(x) = argmin
a

c(x, a) + γ Ep(x′ |x,a)[V
π(x′)]. (5.0.5)

We can show that the new policy π′ given by (5.0.5) will be at least as
good as π. Moreover, as we shall see later, if the resulting policy π′ is the
same as the current policy π, then π is the already the optimal policy. Put
differently, we only have an optimal policy if there is no change at any single
state we can make that would appear to incur less long term cost.

policy iteration 49

Policy improvement can also be expressed in terms of Qπ(x, a), the quality
function, sometimes called the Q-function or action value function. The Q-
function Qπ(x, a) is the sum of the cost of performing an action a at state x
and the expected cost to go from the resulting state under policy π.

Qπ(x, a) = c(x, a) + γ Ep(x′ |x,a)[V
π(x′)] (5.0.6)

A new policy π′ can, therefore, be formed from an existing policy π by
tweaking the action selected at a state. According to the policy improvement
step, if π′ is selected such that

π′(x) = argmin
a

Qπ(x, a). (5.0.7)

Policy Iteration Algorithm

Combining policy evaluation and policy improvement, we can get an al-
gorithm, Policy Iteration, for finding a good policy from an arbitrary initial
policy π0.

Algorithm 9: Policy Iteration. Here the policy evaluation step can
be computed by, e.g. Algorithm 8 or solving a linear system.

Start with arbitrary π0
k← 0
while not converged do

Policy Evaluation: compute Vπk

for ∀x ∈ X do
πk+1(x) = argmin

a
c(x, a) + γ ∑x′∈X p(x′|x, a)Vπk (x′)

k← k + 1
return πk(x), ∀x

5.1 Policy Iteration Optimality

During the policy iteration, the difference in value of the current policy π

and the optimal value function |Vπ(x) − V∗(x)|, decreases exponentially as
a function of number of iterations. In practice– although with very little
theoretical justification– it is found that policy iteration generally requires
fewer iterations than Value Iteration. However, it does require more work on
each iteration.

Understanding whether Policy Iteration will converge to the best policy
is not trivial. The standard argument, outlined below, uses contradiction to
show that there are no local optima, so, since each step is an improvement,
the algorithm will converge to the optimum. To see this we need to show
that:

• Policy Iteration monotonically improves

• Policy Iteration only produces no change in policy if it is at a global
optima.

Together these imply reaching a global optima in finite time if there are a
finite number of policies being considered. 2 2 Interestingly, it can be shown PI can

theoretically visit an exponentially
large set of policies, however, the
policies distance from optimality
decays geometrically in the number of
iterations.

50 draft: modern adaptive control and reinforcement learning

Monotonic Improvement

To show that the algorithm monotonically improves, we look at the improve-
ment in the value function between policies. We switch actions only if (see
Figure 5.1.1) the policy from that point onwards is an improvement.

To calculate the policy is improved, let us consider the difference between
the value functions under two policies π and π′ for a given initial state x0.
As is shown in Figure 5.1.1, let us consider the “value improvement” time-
step by time-step.

(a) Choosing action a′ in state x0
which minimizes (5.0.5) at x0, then
following π

(b) Choosing action a′ in state x1
which minimizes (5.0.5), then follow-
ing π

Figure 5.1.1: Improvement in
the value function: Blue dots
denote states, red arrows de-
note actions that minimizes
(5.0.5) for a state, blue arrows
denote actions in π.

The value improvement accrued at the initial time-step, due to the fact
that π′ chooses the action that minimizes (5.0.5) at x0, must be:

c(x0, π′(x0)) + γ Ep(x′ |x0,π′(x0))[V
π(x′)]−Vπ(x0)

=Qπ(x0, π′(x0))−Vπ(x0).

The value improvement accrued at the second time step (due to the fact
that π′ chooses the action that minimizes (5.0.5) at x1) is:

Ex1∼p1

[
c(x1, π′(x1)) + γ Ep(x′ |x1,π′(x1))[V

π(x′)]−Vπ(x1)
]

=Ex1∼p1

[
Qπ(x1, π′(x1))−Vπ(x1)

]
,

where p1(x1) = p(x1|x0, π′(x0)).
Let’s denote by pt(x) the probability of visiting state x at time t when

we start at state x0 and follow policy π′, i.e. pt = Pr[xt = x| xo, π′]. By
proceeding inductively from the above, we see that the difference between
value functions can be calculated using the following equality:

Lemma 1. Performance Difference Lemma: 3 3 J. A. Bagnell, A. Y. Ng, S. Kakade, and
J. Schneider. Policy search by dynamic
programming. In Advances in Neural
Information Processing Systems, 2003

Vπ′ (x0)−Vπ(x0) =
∞

∑
t=0

γt Ex∼pt

[
Qπ(x, π′(x))−Vπ(x)

]
By the policy improvement step, we know that Qπ(x, π′(x))− Vπ(x) ≤ 0

for all x ∈ X. This lemma implies Vπ′ (x0) − Vπ(x0) ≤ 0 holds uniformly
over all initial states and thus we see that the policy iteration algorithm
improves the policy monotonically. 4 4 Assuming everywhere the infinite

horizon value function exists, which of
course holds for γ < 1
The Performance Difference Lemma
is a powerful tool. It’s proof, and the
proof that policy improvement works in
the Policy Iteration algorithm, have the
same essential character.

policy iteration 51

Optimality

When policy iteration has stopped making improvements, i.e. a local opti-
mum is reached,

(π, Vπ) = (π′, Vπ′).

In this case, we have,

Vπ(x) = Vπ′ (x) = min
a

c(x, a) + γ Ep(x′ |x,a)
[
Vπ(x′)

]
.

Note this immediately implies that (π, Vπ) are a solution to the Bellman
Equation. Therefore π′ = π∗ since (π∗, V∗) since the optimal value function–
the Bellman Equation– is unique.

5.2 Implementation Notes

Often a Modified Policy Iteration is used in practice. Modified Policy Iteration
warm-starts the policy evaluation step with the value function from the
previous step and then does a few iterations k of policy evaluation. In the
special case of k = 1, it reduces to VI (see Sutton and Barto Chapter 4).
Since the expensive part of policy iteration is the policy evaluation step, this
warm-start can greatly speed up the algorithm.

Dynamic programming algorithms (Value Iteration, Policy Iteration,
Modified Policy Iteration, etc) are expensive if the state space is large. It can
be used in its closed form (solving a linear system) if the value function is
sparse. Otherwise the value function can be approximated by:

• Linear function approximator Ṽθ(x) = θ>φ(x), where φ(x) is the feature of
the state x.

• Nearest Neighbour – for any x find the closest x′ (in the sampled space)
and return that value.

• Neural Network – a popular choice that has led to state of the art results
in games from Backgammon to Chess.

• Any other regression algorithm....

Approximating the value function is the basis for the Fitted Value Iteration
algorithm which we discuss in later lectures.

5.3 Related Reading

[1] Bagnell, J. A. , Kakade, S. Ng, A., Schneider, J. Policy Search by Dynamic
Programming, NIPS, 2003.

[2] Puterman, M. Markov Decision Processes: Discrete Stochastic Dynamic
Programming, 2005.

	Policy Iteration
	Policy Iteration Optimality
	Implementation Notes
	Related Reading

