
6
An Invitation to Imitation

Introduction

We take a detour now to study a conceptually simpler problem: that of
imitation learning. Imitation learning is the study of algorithms that im-
prove performance in making decisions by observing demonstrations from
a teacher. Consider, for instance, Figure 6.0.1, which shows a human ex-
pert tele-operating a walking robot by commanding its footstep motions.
Such motions and the decisions behind them are complex and difficult to
encode in simple, manually programmed rules. While demonstrating a de-
sired behavior may be easy, designing a system that behaves this way is
often difficult, time consuming, and ultimately expensive. Machine learn-
ing promises to enable “programming by demonstration” for developing
high-performance robotic systems.

Figure 6.0.1: Human expert
demonstration to train a
walking robot to cross very
rough terrain. Learning to Search
(LEARCH) [Zucker et al., 2011,
Ratliff, 2009] attempts to make
a footstep planner mimic the
human pilot’s choices. Imitation
learning is the study of algo-
rithms that improve decision
making through data collected
by observing an expert – often,
but not always a person who
can accomplish a task that is
hard to hand-program.

54 draft: modern adaptive control and reinforcement learning

Learning Behavior Without Generalization

Many of the references in imitation learning focus on learning fixed trajec-
tories, or on controllers to achieve such trajectories in the presence of distur-
bances. (See a detailed discussion in [Argall et al., 2009, Osa et al., 2018].)
Such work – including the foundational [Atkeson and Schaal, 1997] and the
stunning helicopter acrobatics of [Coates et al., 2009] – vividly dramatizes the
remarkable power of human demonstration. However, these approaches are
limited in their ability to generalize to new circumstances. Our focus here is
on strategies that can generalize to unfamiliar settings and base decisions on
perceptual feedback. It is important to appreciate, however, that the bound-
ary between trajectory learning approaches and general imitation learning
is not clear. Atkeson [Atkeson and Morimoto, 2003], and others, notably
[Safonova and Hodgins, 2007, Mülling et al., 2013], show that a library of
trajectories can indeed be made to generalize very broadly through clever
arbitration and blending.

Imitation 6= Supervised Learning – The Distinctions

Unfortunately, many approaches that utilize the classical tools of supervised
learning fail to meet the needs of imitation learning. We must address two
critical departures from classical supervised learning to enable effective
imitation learning.

Perhaps foremost, classical supervised machine learning exists in a vac-
uum. Predictions made by these algorithms are explicitly assumed to have
no effect on the world in which they operate. We will consider the problems
that result from ignoring the effect of actions that influence the world and
highlight simple “reduction-based” approaches that mitigate these problems
both in theory and in practice.

Second, robotic systems are typically built atop sophisticated planning
algorithms that efficiently reason far into the future. Ignoring these planning
algorithms in lieu of a reactive learning approach often leads to poor, my-
opic performance. While planners have demonstrated dramatic success in
applications ranging from legged locomotion to outdoor unstructured navi-
gation, such algorithms rely on fully specified cost functions that map sensor
readings and environment models to a scalar cost. These cost functions are
usually manually designed and hand programmed, which is difficult and
time-consuming. Recently, a set of techniques for learning these functions
from human demonstration by applying an Inverse Optimal Control (IOC)
approach to find a cost function for which planned behavior mimics an ex-
pert’s demonstration have been shown to be effective and efficient. These
approaches shed new light on the intimate connections between probabilistic
inference and optimal control. 1

1 We prefer the older, more widely used,
terminology Inverse Optimal Control
as opposed to Inverse Reinforcement
Learning (IRL) throughout. The central
premise of research in inverse optimal
control approaches to imitation learning
is that the policy to be learned by
demonstration can be thought of as
a near-optimal policy for some plant
with an unknown reward function. In
Reinforcement Learning, by contrast,
the plant itself is viewed as unknown.
Thus we are typically solving the
inverse problem of optimal control,
but not of the inverse of reinforcement
learning, rendering the phrasing IRL
somewhat misleading. Moreover, it’s
valuable to connect to the original
literature in control theory dating
back to Kalman’s [Kalman, 1964]
foundational work.

These two points are taken up in turn in the next two major sections.

6.1 Cascading Errors and Imitation Learning

Dean Pomerleau’s work 2 on learning autonomous driving is the seminal 2 D. Pomerleau. ALVINN: An Au-
tonomous Land Vehicle in a Neural
Network. In Advances in Neural In-
formation Processing Systems (NIPS),
1989

work in the field of imitation learning. Moreover, it gets right to the heart of
the differences between imitation learning and classical supervised learning.
Figure 6.1.1 demonstrates the setup of Pomerleau’s experiments on learning

an invitation to imitation 55

to drive the NavLab vehicle by using a neural network to map camera
images to steering angles. Pomerleau developed this procedure by driving
the car and collecting pairs of coarse camera images and steering angles. He
then trained a simple neural network in real time to take new images and
predict the resulting steering angle. 3

3 The Pomerleau works truly hold up
for today’s reader both for their impact
on autonomous vehicles and their deep
insight into the key differences between
supervised and imitation learning.

Figure 6.1.1: Pomerleau’s Au-
tonomous Land Vehicle in a
Neural Network system at work
driving the Carnegie Mellon
NavLab vehicle. Used with
permission.

Figure 6.1.2: A schematic of
Pomerleau’s ALVINN driving sys-
tem. The approach used a small
neural network to map coarse cam-
era images into a disretized set of
steering angles. Image used with
permission.

Consider a smaller, simplified version of the problem – learning to drive
a car in a video game by performing a direct mapping from screen shots
to steering angles. Figure 6.1.3 illustrates the classic supervised learning
approach to learning such a mapping. 4 4 Stephane Ross’s results [Ross et al.,

2011b, Ross, 2010a,b] applying such a
procedure using linear regression on a
simplified version of the screen image
can be seen at Supervised Tux.

Unfortunately, in this instance – as is quite common in practice – the ap-
proach fails disastrously and the learned controller quickly drives off the
road. Let’s consider what can go wrong. Of course, the learning problem

https://youtu.be/ywH9Z2NivjY

56 draft: modern adaptive control and reinforcement learning

Figure 6.1.3: A sketch of the
problem of learning to drive a
video game simulation. A per-
son drives the car around the
course and collects data. That
dataset consisting of images
and associated steering angles
is fed to a classic supervised
learning algorithm, e.g., linear
regression. The resulting policy
π is used to drive the vehicle.
Hilarity ensues.

may simply be too difficult. Perhaps we simply can’t find a classifier or re-
gressor that predicts the driver’s steering decisions with small error. Perhaps
a linear predictor is a bad choice for this problem; a richer hypothesis class
might be more useful. That turns out not to be the case – a linear predictor is
perfectly adequate for the task.

We could simply be overfitting – perhaps our training data set is too small
to produce a good solution, which can lead to poor test performance. Avoid-
ing overfitting has long been one of the central concerns in the study of
learning theory[Shalev-Shwartz and Ben-David, 2014]. However, hold-out er-
rors 5 are quite close to training errors in this example. Moreover, the learned 5 One can measure and control overfit-

ting by considering the performance
of a learned predictor on data that is
“held-out”: that is, data not available
to the learning algorithm to train its
predictor.

policy6 fails to perform well even with a very large set of training data.

6 We use policy here to refer to any
learned predictor that maps features
to actions. For discrete actions, this is
simply a classifier. The terminology is
common to optimal control and rein-
forcement learning, but is sometimes
off-putting for roboticists and experts in
supervised learning.

What goes wrong? In a nutshell, learning errors cascade in imitation learning
but are independent in supervised learning. Consider, for instance, a dis-
crete version of the problem that only predicts “steer left” or “steer right”.
Inevitably, our learning algorithm will make some error – let’s say with small
probability ε for a good learner – and steer differently than a human driver
would. At that point, the car will no longer be driving down the center of the
road and the resulting images will look qualitatively different then the bulk
of those used for training. Imitation learning has difficulty with this situa-
tion. The learner has never encountered these images before. Since learners
can only attempt to do well in expectation over a distribution of familiar
examples, an unusual image may incur further error, often with a higher
probability.

As a result, the controller driving the simulation will steer the car close to
the edge of the road – a very rare occurrence in training – and the resulting
decision will likely be quite poor. Often, the learned controller will drive off
the road, failing completely at the task. 7 7 Pomerleau’s techniques for addressing

these issues are particularly instructive.
These include synthetic data genera-
tion, the use of online learning, and
the emphasis on hard examples. This
approach effectively manages covariate
shifts similar to those caused when a
learner influences its own test distribu-
tion. [Bagnell, 2005].

More formally, we can consider an imitation learning problem of T se-
quential decisions [Ross et al., 2011a]. If we learn a classifier making ε errors
in predicting a driver’s decisions in expectation over the distribution of ex-
amples induced by the teacher, we would hope to make Tε mistakes over the

an invitation to imitation 57

sequence of decisions. Unfortunately, an early error may compound into a
long sequence of mistakes. As a result, the best we can hope for is O(T2ε)

mistakes[Ross and Bagnell, 2010]. 8 From a statistical point of view, our 8 It’s simplest to imagine a fixed time
horizon. This fixed T can be replaced
in analysis by notions of mixing time,
discount factor, or a notion of how
long any one mistake can propagate.
It’s therefore useful to consider T as
representing an appropriate notion
of the effective time horizon of the
problem, not the actual number of
decisions to be made.

training and test data sets are not drawn from the same distribution and
thus the supervised learning assumption of independent and identically
distributed (i.i.d.) data is badly violated.

A natural suggestion for solving this problem is to collect data for all
possible road conditions or over all images we may see. Unfortunately, it’s
difficult to obtain data for all possible inputs – the set of potential images
is very large. Worse, no learner in our hypothesis class may be capable of
handling all possible inputs. Assuming realizability – the “true” target func-
tion in our class– is generally far too strict, and algorithms that require this
generally perform poorly. [Shalev-Shwartz and Ben-David, 2014] Instead,
in machine learning we hope that there is a function in our hypothesis class
that can work well on average over the actual distribution of training data that
we encounter. 9 9 This point represents a general tension

between the techniques of analysis in
decision making and control – where
one [Ljung, 1978] often requires a
model or a controller to be uniformly
good for all possible inputs, versus
the paradigm of learning and statistics
where it is recognized that this is not
possible in high dimensional problems.
In control, the focus is on ensuring
good expected or average performance
over the distribution of examples that
actually occur. This mismatch lies at
the heart of many of the difficulties of
marrying learning and control. The
interactive method discussed here –
and no-regret learning in general –
may serve as the bridge between these
approaches.

A Simple Fix

If training data is plentiful and the time horizon is fixed and short, the com-
pounding of errors is easily addressed. To proceed, we can train a policy for
each of the T steps. The first policy is simply trained in normal supervised
learning fashion by collecting data: the camera image and the person’s steer-
ing angle at the initial decision. We train the next policy by executing the
initially learned policy for the first time step, then turning over the wheel to
the teacher. A new data set is collected for the second time step, consisting of
the input images seen by the teacher at time 2, and the resulting steering de-
cisions. A policy can then be learned for time step 2 via the usual machinery
of supervised learning. We can easily repeat this process to train the k-th step
in a time-varying policy by observing the teacher’s decisions after running
the first k− 1 steps of the learned policy [Ross and Bagnell, 2010].

It follows that each policy learned is being tested in exactly the way it
was trained. The policy encounters the same distribution of input examples–
albeit not the same actual examples! If an earlier policy makes errors, later
ones can learn to recover from them by mimicking the teacher’s recovery
strategy. This halts error compounding and achieves the error rate Tε that
one would expect in standard supervised learning.

A practical solution: DAGGer

While the above approach cleanly addresses the problem of decisions affect-
ing the input distribution in imitation learning, it is impractical for imitation
learning problems like the video game driving problem. We simply can’t
afford to train a policy for every step in a long sequence of decisions like
driving a vehicle. Moreover, this process should be unnecessary if the effec-
tive time horizon is shorter.

A solution to this problem relies on interaction: interleaving execution
and learning. In particular, at each iteration of the algorithm, the current
learned policy is executed. Throughout execution, the teacher “corrects”
the solution – that is, provides a preferred steering angle that is recorded
in a new data set but not executed. After sufficient data is collected, it is

58 draft: modern adaptive control and reinforcement learning

Figure 6.1.4: Illustration of
the Dataset Aggregration
(DAGGer) approach to im-
itation learning via repeated
interaction. At each iteration
of the algorithm, the current
learned policy is executed.
Throughout execution, the
teacher “corrects” each step –
that is, provides a preferred
steering angle that is recorded
in a new data set but not ex-
ecuted. Throughout these
iterations, data is aggregated
together to lead to the next
policy. This provides much
stronger guarantees than simple
supervised learning.

aggregated together with all of the data that was previously collected. A
supervised learning algorithm then generates a new policy by attempting
to optimize performance on the aggregated data. This process of execution
of the current policy, correction by the teacher, and data aggregation and
training is repeated.

1 # Take an i n i t i a l po l i cy : π0 , Teacher : s t a t e −> act ion ,
2 # Learner : [(s t a t e , a c t i o n)] −> pol icy , GenSystemTrajectory : π −> [s t a t e]
3 def DAGGER(π0 , Teacher , GenSystemTrajectory , Learn) :
4 D = [] , π = π0
5 f o r i in range (N) : # run f o r N i t e r a t i o n s
6 Di = [(s t a t e , Teacher (s t a t e)) f o r s t a t e in GenSystemTrajectory (π)]
7 D. append (Di)
8 π = Learn (D) # Optional ly run any no−r e g r e t l e a r n e r on the Di
9 re turn π

10 # Pre fer red : ins tead return the s t o c h a s t i c po l i cy t h a t mixes uniformly between a l l the
11 # p o l i c i e s learned or choose the bes t s i n g l e po l i cy on v a l i d a t i o n over the i t e r a t i o n s

DAGGer Algorithm Pseudo-code

Intuitively, this approach creates policies that are capable of correcting
their own mistakes. If the learner steers too close to the edge of the road, the
policy will generate new training data that includes the teacher’s preferred
actions for handling such situations. The aggregation of data prevents it from
forgetting previously-learned situations.

But what can one say formally about this approach? If our supervised
learner is one of a large class of learners that have the no-regret property[Cesa-
Bianchi et al., 1997], we can formalize the idea that learning a policy with
low training error implies good performance at imitating the expert. Put
differently, one of two things must happen: either the supervised learning
problem will become too hard to solve (expected error greater then ε) or a
policy that matches the teacher with only approximately Tε error over the
full horizon will be learned throughout the iterations. 10 10 It need not, however, be the final

policy learned. Instead, the claim is
merely that one of the policies– or a
uniform stochastic mixture of the entire
set learned– must perform well. In
practice, choosing the final learned
policy is often simplest and sufficient.

Stability, Online Learning and “No-regret”

Case Study: DAGGer in Anger

When we apply this approach of teacher correction, aggregating data and
iteratively learning policies to the car driving problem, the result is some-
what boring to watch. While simple supervised learning averages about 3-4
failures per lap, the interactive DAGGer learning approach with the same
number of examples from the teacher very quickly reaches nearly 0 falls per

an invitation to imitation 59

lap. No amount of training data enables the supervised learning approach to
achieve that same performance– it always falls multiple times per lap.

It’s more interesting to consider learning a complex, real-world reactive
control task like flying through a cluttered domain – for example, between
tree trunks underneath a forest canopy. 11 The problem follows the setup of 11 The “Forest of Endor” problem, to

use Nick Roy’s evocative phrase.Pomerleau’s: compute features (optical flow, color histograms, simple texture
features etc.), pool them over patches of the images, and provide the result-
ing large feature vector as an input to a regression algorithm. As output, the
learner will predict the commanded lateral velocity of a human pilot and
train the algorithm to reactively map these image features to controls.

The result is a simple controller that navigates through dense forest at
nearly the same effectiveness as a human pilot. [Ross et al., 2013a] 12. Inter- 12 Videos of the approach can be found

at LAIRLab BIRD Website [Ross et al.,
2013b]

estingly, failures largely come about due to the nature of a reactive controller
and a small field of view. It’s not unusual for the algorithm to dodge a tree,
have that tree leave its field of view, then crash into the same tree sideways as
it tries to avoid a new tree. Adding memory – whether through intelligently
constructed features or through predictive state representations – represents
the best hope for improving the learning of such control strategies.

Recently other authors have demonstrated in success in applying DAG-
Ger to a rich class of problems including playing a broad class of Atari 2600

games [Guo et al., 2014] and robot navigation [Kim et al., 2013].

Learning with a Goal Besides Imitation We focused entirely above on a loss
function of simple imitation: our goal is to choose the same actions as the
expert measured according to some loss function l(y, π(x)). But in many
scenarios – for instance, driving – our real goal is actually substantially
different. We may wish to minimize the probability of crashing, or maximize
our success at manipulating an object, or achieve any other control objective
that the teacher is presumably optimizing. The same style of approach is
easily adopted – albeit with potentially substantially higher computational
and sample complexity – for this setting by replacing the data about best
action with an estimate of cost-to-go from the teacher. [Ross and Bagnell,
2014] Crudely speaking, this cost-to-go is an estimate of how hard it will
be for the teacher to recover if the learner were to make a mistake. The key
question of what to do when a teacher can’t articulate their own cost function
is taken up in the next section.

Summary

In an important sense, recent theory and algorithms for imitation learning
formalize a simple lesson: one cannot learn to drive a car simply by watching
someone else do it. Instead, feedback is essential – we must try to drive and
receive instruction that corrects our mistakes.

Crucially, this general approach is largely agnostic to the underlying
supervised learning approach. It is an interactive reduction to supervised
learning methods. Formal results are only known for settings (like kernel
machines, Gaussian processes, and linear predictors) where no-regret al-
gorithms are known. But empirical evidence suggests that this approach is
remarkably effective even when this condition doesn’t formally hold, since
many learning algorithms are actually both stable and good predictors.

Finally, it is important to note that all discussion here centered on learning

http://robotwhisperer.org/bird-muri/

60 draft: modern adaptive control and reinforcement learning

mappings directly from observations to controls without considering state-
estimators (e.g. filters.) However, there is no reason one can not nor should
not learn to imitate in belief space– that is learn mapping from the output of
a filter (e.g. a best estimate of the underlying world state) to decisions. In
practice, this is almost certainly necessary to achieve high performance; such
approaches fall under the same general approach described here as we can
consider the filter as simply a part of the environment and the filter output
as a new, generalized observation.

6.2 Decisions are Purposeful: Inverse Optimal Control

Figure 6.2.1: An image of the
DARPA UPI “Crusher” robot
autonomously crossing rough
off-road terrain. It is difficult
to manually engineer the con-
nection between perception and
planning. Imitation learning
techniques make it possible to
automate this process. Further
examples of the vehicle travers-
ing rough terrain from temper-
ate woodlands, to marshes, to
dense vegetation, to mock-up
urban environments all under
autonomous control can be seen
here and here.

Imitation learning is fundamentally different then classical supervised
learning in another sense. For instance, consider the problem of navigating
through very rough outdoor terrain – a major focus of robotics research
for decades. Figure 6.2.1 shows Crusher, an autonomous robot that was
developed as part of a DARPA fundamental research project into outdoor
robotics. Crusher traversed thousands of kilometers of diverse, rough, terrain
with minimal human intervention over years of field testing. In contrast to
many other outdoor navigation efforts, it typically travelled from 0.5 to 10

kilometers between human provided waypoints. All decisions along the
way were made based on information from its own perception system and
(optionally) overhead maps (e.g. images collected from mapping companies
like those used in Google Maps).

A reactive controller is unlikely to make any meaningful progress towards
a goal in this domain; it is difficult to imagine training a simple supervised
learning method to accomplish this complex task. The robot must instead
execute a long, coherent sequence of decisions in order to achieve its goal.
This requires a sense of planning – and of replanning as new perceptual
information becomes available – to achieve good performance.

To adapt to imitation learning to this setting, it is valuable to consider
the architectures that roboticists have created to achieve intelligent and
deliberative navigation. Since the pioneering projects in off-road navigation
[Hebert, 1997], effective robot navigation has relied on an optimal control or
replanning architecture to structure decision making. This architecture has
been replicated and refined throughout the field of robotics [Zucker et al.,

http://lairlab.org/wp-content/uploads/2009/10/UPI_Drum08_Composite.mpg
http://lairlab.org/wp-content/uploads/2009/10/Somerset07_Woods_Short.mpg

an invitation to imitation 61

2011, Urmson et al., 2008, Wellington and Stentz, 2004, Leonard et al., 2008,
Jackel et al., 2006, Bachrach et al., 2009] and is currently used in the most
advanced autonomous navigation systems.

Figure 6.2.2: Components of
a robot architecture: Sensors
(LADAR, cameras) feed a per-
ception system that computes
a rich set of features (left side)
developed in the computer
vision and robotics fields.
Depicted features include es-
timates of color and texture,
estimated depth, and shape
descriptors of a LADAR point
cloud. Features that are not
depicted here include esti-
mates of terrain slope, semantic
labels (“rock”), and other fea-
ture descriptors that can be
assigned a location in a 2D grid
map. These features are then
massaged into an estimate of
“traversability” – a scalar value
that indicates how difficult it is
for the robot to travel across the
location on the map.

Figure 6.2.2 shows a diagram of such a robot architecture. Sensors
(LADAR, cameras) feed a perception system that computes a rich set of
features (left side) developed in the computer vision and robotics fields. Fea-
tures that are shown in Figure 6.2.2 include color, texture, estimated depth,
and shape descriptors of a LADAR point cloud. Features that aren’t shown
in the diagram include estimates of terrain slope, presence of semantic cat-
egories (“rock”), and many other feature descriptors that can be assigned a
location in a 2D grid map. These features are then massaged into an estimate
of “traversability” – a single scalar value that that indicates how difficult it is
for the robot to travel across the location on the map. This value is included
in a “cost map” for each state of the robot. The final decisions of the robot
represent steps along a minimum cost plan from the robot’s current loca-
tion to a goal state. The robot executes a small part of the current plan at
each time instant. As the robot moves, the perception system provides up-
dates about the terrain it is crossing. The cost map is then updated with new
traversibility values and a new plan is generated.

Real implementations, of course, have much richer spaces of states then
simply a discretization of geometric locations of the robot center. Almost
inevitably, they contain a hierarchy of planning layers that capture a state-
space description of the robot at higher and higher fidelities as they consider
shorter time-scales. [Zucker et al., 2011] The diagram in Figure 6.2.2 never-
theless captures the essential behavior of many such systems and is often
exactly the behavior of the coarsest levels of such a hierarchy.

From the point of view of this architecture, only one role exists for imita-
tion learning. Perception computes features that describe the environment;

62 draft: modern adaptive control and reinforcement learning

the output control is always the prefix of the currently believed-to-be-optimal
plan. The learning algorithm then must transform the perceptual description
(a feature vector) of each state into a scalar cost value that the robot’s planner
uses to compute optimal trajectories.

Perhaps surprisingly, costing is one of the most difficult tasks in au-
tonomous navigation. As documented in [Silver, 2010], this single piece of
code required the largest number of changes and demanded the most en-
gineering effort. The entire behavior of the robot depends on this module
working correctly. Moreover, nearly all changes to the software end up re-
quiring either validation or modification of the costing infrastructure. If a
sensor changes or the perception system develops or refines features, the
costing mechanism must be updated. If the planner changes – for instance by
C-space expanding obstacles– the costing system must change. Tuning and
validating such changes demands a tremendous amount of time and effort.

However, the robot can use imitation to learn this cost-function mapping.
A teacher (that is, a human expert driver) drives the robot between way-
points through a representative stretch of complex terrain. We can then set
up a problem of Inverse Optimal Control: that is, we attempt to find a cost
function that maps perception features to a scalar cost signal so that the
teacher’s driving pattern appears to be optimal.

Nathan Ratliff formulated the problem of learning such a cost function
as an application of structured prediction and demonstrated that very simple
sub-gradient based algorithms are remarkably effective at solving it. 13 13 In fact, surprisingly such sub-gradient

methods are actually the best known
algorithms for solving large support
vector machine and more general struc-
tured margin problems in a follow-on
paper. These techniques are now the
de facto standard and have been im-
plemented in a wide range of libraries
[Agarwal et al., 2014].

Inverse Optimal Control (IOC) is a rich and fascinating subject that dates
back to Kalman’s work on the Linear-Quadratic-Regulator problem. Kalman
[Kalman, 1964] asked (and answered) a natural question: given a linear
controller or policy, is there a cost function that makes it optimal for a given
Single-Input Single-Output plant?14 Boyd [Boyd et al., 1994] provided a

14 Amusingly, while Kalman’s work
was critical in advancing the use of
state-space techniques for control, his
solution to the IOC problem was rooted
fundamentally in frequency domain
techniques.

simple convex programming formulation for the multi-input, multi-output
linear-quadratic problem.

Only recently, however, has Inverse Optimal Control become an engineer-
ing tool for designing intelligent systems. The recent work in the machine
learning on this area [Ng and Russell, 2000, Abbeel and Ng, 2004, Ratliff
et al., 2009c, Ziebart et al., 2008a, 2010] can be summarized as providing
several advances over the early contributions:

Figure 6.2.3: Iterations of the
LEARCH algorithm. See the
main text for a description of
how this algorithm modifies its
estimate of a cost function by
mapping features of a state to a
scalar traversability score.

(1) Enabling a cost function to be derived (at least in principle) for es-
sentially arbitrary stochastic control problems using convex optimization
techniques – any problem that can be formulated as a Markov Decision
Problem.

(2) Requiring a weak notion of access to the purported optimal controller.

an invitation to imitation 63

Figure 6.2.4: A demonstra-
tion of the Learning to Search
(LEARCH) algorithm applied
to provide automated inter-
pretation in traversability cost
(Bottom) of satellite imagery
(Top) for use in outdoor navi-
gation. Brighter pixels indicate
a higher traversability cost on
a logarithmic scale. From left
to right illustrates progression
of the algorithm, where we
see the current optimal plan
(green) progressively captures
more of the demonstration (red)
correctly.

No closed form description of the controller needs to exist, just access to
example demonstrations.

(3) Statistical guarantees on the number of samples required to achieve
good predictive performance and even stronger results in the online or no-
regret setting that requires no probabilistic assumptions at all.

(4) Robustness to imperfect or near-optimal behavior and generaliza-
tions to probabilistically predict the behavior of such approximately optimal
agents.

(5) Some algorithms further require only access to an oracle that can solve
the optimal control problem with a proposed cost function a modest number
of times to address the inverse problem.

The central premise of IOC techniques for imitation learning is that struc-
turing a space of policies as approximately optimal solutions to a control
problem is a representation that enables effective deliberative action. More-
over, IOC methods rely on the observation that cost functions generalize
more broadly [Ng and Russell, 2000] then policies or value functions. Thus,
one should seek to learn and then plan with cost functions when possible,
and revert to directly learning values or policies only when it is too computa-
tionally difficult.

The Learning To Search (LEARCH) Algorithm. The key algorithmic ideas
for modern IOC algorithms statistical guarantees can be understood in the
framework of convex optimization of an objective function that stands as
a surrogate for correctly predicting the plan or policy that the teacher will
follow. As such, many of the original approaches were formulated in terms
of large quadratic programs [Ratliff et al., 2006] or Linear-Matrix Inequalities
[Boyd et al., 1994] and the resulting algorithms are somewhat opaque. How-
ever, more recent algorithms designed for solving large scale and non-linear
problems are quite natural and might be guessed without even appreciating
they are solving a well-defined optimization problem.

Consider, for instance, the Learning to Search (LEARCH) approach of
[Ratliff et al., 2009c] in the context of rough-terrain outdoor navigation dis-
cussed above. We may step through the algorithm on a cartoon example
to see why it might work. We first consider a path driven by teacher from
a start point to a goal point, then imagine a simple planning problem on a
discretized grid of states that the robot can occupy. Every iteration of the
algorithm consists of the following: (a) computing the current best optimal
plan/policy; (b) identifying where the plan and teacher disagree and creating
a data set consisting of features and the direction in which we should modify

64 draft: modern adaptive control and reinforcement learning

the costs; (c) using a supervised learning algorithm to turn that data set into
a simple predictor of the direction to modify costs; and (d) computing a cost
function as a (weighted) sum of the learned predictors.

1 # Take a sequence of MDPS and demonstrations [Mi , ξi)]
N
i=1 where MDP M i s a s t o c h a s t i c planning problems

c o n s i s t i n g of s t a t e s , ac t ions , and a t r a n s i t i o n funct ion used f o r planning ,
2 # (opt iona l) l o s s f u n c t i o n s li : s t a t e , ac t ion−>R t h a t measures d e v ia t i o n s from the demonstrated plan ,

3 # f e a t u r e funct ion f : s t a t e , a c t i o n −> Rd t h a t d e s c r i b e s s t a t e s in terms of f e a t u r e s meaningful f o r
c o s t

4

5 def LEARCH({(Mi , ξi)}N
i=1 , f , {li}N

i=1 = 0) :

6 s0 = 0 # I n i t i a l i z e (log)−c o s t funct ion , s0 : Rd → R to zero
7 f o r t in range (T) : # run f o r T i t e r a t i o n s
8 D = [] # I n i t i a l i z e the data s e t to empty
9 f o r i in range (N) : # f o r each example in the data s e t

10 cl
i = est (Fi) − lTi # Compute costmap with opt iona l l o s s augmentation

11 µ∗i = Plan (Mi , ci) # f ind the r e s u l t i n g optimal plan µ∗i = argminµ cl
i µ , µ c o n s i s t e n t with Mi

12 # µ∗ ’ s counts the time spent in s t a t e / a c t i o n s p a i r s under the plan−−
13 # f o r d e t e r m i n i s t i c MDPS t h i s i s simply an i n d i c a t o r of whether the optimal plan
14 # v i s i t s t h a t edge in the planning graph
15 µi = [ξi . count ((s , a)) f o r (s , a) in Mi] #compute s t a t e s−a c t i o n s in demonstration
16 # Generate p o s i t i v e and negat ive t r a i n i n g examples :
17 Di = [(fi (s, a) , s ign (µ∗i

sa − µi
sa) , |µ∗i

sa − µi
sa |) f o r (s , a) in Mi]

18 # i f |µ∗i
sa − µi

sa | = 0 f o r a s t a t e−a c t i o n we can simply not generate t h a t point

19 D. append (Di)

20 ht = Learn (D) # Train a r e g r e s s o r (or c l a s s i f i e r) ht : Rd−>R on the r e s u l t i n g weighted data s e t
21 st+1 = st + αt ht # Update the (log) hypothesis c o s t funct ion
22 re turn exp (sT)

LEARCH Algorithm Pseudo-code

Theory and Guarantees. At its heart, the problem of correctly identifying
a teacher’s reward function is ill-posed. First, it is unreasonable to believe
the teacher is truly an optimal controller for some simple Markov Decision
Process that describes the world. Second, given a single behavior, there are
generally infinitely many reward functions that lead to the same behavior
and are thus unidentifiable. [Abbeel and Ng, 2004]

There are thus two commonly used notions of successful IOC used in
machine learning. The first (originated by Abbeel and Ng [Abbeel and Ng,
2004]) considers a class of reward functions that are linear in a set of features
that describe states. Our goal then is to ensure that whatever behavior is
learned by imitation achieves the same reward as the teacher even when the
reward function itself cannot be identified. The second (typified by Maximum
Margin Planning [Ratliff et al., 2006, 2009c]) is agnostic to whether the teacher
is actually an optimal controller or even cares about a reward function. In-
stead, it quantifies a notion of successful imitation – for instance, agreement
with the trajectory taken by the teacher – and then attempts to optimize that
notion of agreement with the teacher.

These notions are surprisingly closely tied. Methods like Maximum Margin
Planning that ensure successful agnostic imitation also can provide guar-
antees with respect to the teacher’s reward function (if it exists!).[Syed and
Schapire, 2007] Conversely, while methods like the Maximum (Causal) En-
tropy approach of [Ziebart et al., 2008a], which we cover extensively in the
next chapter, are also designed to achieve the same reward as a teacher, they
can also be understood in a dual formulation as maximizing the likelihood
of the teacher’s plans under a robust statistical model of the agent’s behav-
ior. [Ziebart et al., 2010, 2013] Moreover, some methods, like that of [Ziebart
et al., 2010], have yet another interpretation in terms of optimal control per-
turbed by certain shocks that are not visible to the learner. [Rust, 1994]

an invitation to imitation 65

Figure 6.2.5: (Left) LittleDog
platform crossing a terrain.
(Right) Planning system that
relies on a learning approach to
cost function generation. Each
color represents a different foot
and arrows indicate the paren-
t/child relationship between
footsteps under consideration.
[Zucker et al., 2011]

IOC in other Domains The notion of learning such deliberative strategies by
tuning the cost function of a planner isn’t unique to outdoor navigation– it
arises anywhere long horizon plans are needed and relatively complicated
features exist to describe the state space. [Ratliff et al., 2006, Zucker et al.,
2011] developed a technique for learning costs (and a hierarchy of heuris-
tics) by demonstration (see Figure 1) for a rough terrain legged locomotion
planner. In essence, quasi-static locomotion is treated as discrete planning
problem of carefully arranging footfalls. A complex cost function that takes
into account the terrain at each individual foot as well as features of the en-
tire robot pose that are correlated with good foot placements (for instance,
the size of the polygon of support of the robot [Zucker et al., 2011]) was
learned from expert demonstration. Multiple research groups have since
embraced similar techniques [Kalakrishnan et al., 2011, Kolter et al., 2007].

Purposeful Prediction. Often, behavior demonstrated is only approximately
optimal or may appear to have some non-determinism in its decisions. This
can be understood in two ways: people are not in fact “optimal” in their
decision-making for any reasonable definition of that word, and even more
so, the world those people inhabit is not the simple Markov Decision Process
we use as our model in Inverse Optimal Control techniques. 15 Recent IOC 15 I.e., the map is not the terrain.
learning techniques manage such uncertainty and moreover can make prob-
abilistic predictions of what people are likely to do even in such imperfect
models.

The ability to imitate a person’s imperfect but deliberative behavior im-
plies the ability to predict it. In Figure 6.2.6 we see examples of Activity
Forecasting: predicting people’s likely trajectories in novel scenes via com-
puter vision and inverse optimal control by learning what they are approxi-
mately optimizing in their decision making. [Kitani et al., 2012]

For instance, consider the problem of predicting the likely routes that a
driver might take to travel from home to a store. We can consider a graph
that describes the road network with nodes corresponding to road segments
and edges between road segments that connect. Each road segment is an-
notated with a rich set of features x (dozens or hundreds) that describe it
[Ziebart et al., 2008b] – such as expected travel times at the speed limit, the
grade of the road, the toll cost of that segment, the number of lanes, whether
a church is located along the road, or the presence of a guarded left turn.

The approach of [Ziebart et al., 2008a] efficiently learns a function c(x)
that linearly combines such features to best fit a distribution over trajec-
tories ψ taken by the driver according to the maximum entropy model
p(ψ) ∝ exp(−V(ψ)), where V is the total cost of the trajectory, ∑x∈ψ c(x).

66 draft: modern adaptive control and reinforcement learning

Figure 6.2.6: (Left) Automatic
semantic classification of a scene
via machine learning[Munoz et al.,
2010, Miksik et al., 2013]. (Right)
Activity forecasting combines se-
mantic perception techniques to
identify the actors and object types
in a scene with the probabilistic
formulation of inverse optimal
control to predict an actor’s future
destinations and likely trajecto-
ries based on partial trajectories.
Each image depicts the predicted
distribution of future states for a
pedestrian. The absence of color
implies very low probability, blue
implies low probability, and yellow
to red higher. Only a few potential
goals are shown, and only with a
single observation (predictions im-
prove as more of the path is seen),
to simplify the figure. [Kitani et al.,
2012, Ziebart et al., 2013, 2008a]

When these models are combined with a prior distribution over potential
destinations, they learn both a driver’s implicit preferences (for example,
going out of the way to avoid both unguarded left turns and expensive tolls)
and provide a estimate of a drivers destination and likely future routes after
beginning a trip. The use of the maximum entropy formulation ensures a
strong guarantee on the predictions– no other approach to forecasting an
agent’s actions that uses the same information about features [Ziebart et al.,
2013] can ensure smaller predictive loss.

This approach establishes the deep connection between probability theory,
and particularly the Maximum Entropy Method, and inverse optimal control,
where previously, these were understood as disparate techniques for model-
ing decision-making. [Ziebart et al., 2008a] This thread of work culminated
in a new principle for the statistical prediction of interacting systems (e.g.
a driver and the world, multiple agents playing a dynamic game) [Ziebart
et al., 2010, 2013]. 16

16 Such models can be understood as
a natural generalization of Conditional
Random Fields. They generalize the
common supervised learning models by
considering two interacting stochastic
processes (both decision maker and
the environment can be stochastic pro-
cesses, with the environment assumed
to be known) and arbitrary (and po-
tentially infinite) length sequences of
decisions. [Ziebart et al., 2010, 2013].

Similar techniques can be applied to predict where people are likely to
walk in a complex visual scene. For instance, such methods could recognize
cars and sidewalks in a scene and reason that a person will climb over a car
if strictly necessary to reach a goal, but will preferentially take advantage of
a sidewalk where available. [Kitani et al., 2012] Moreover, such techniques
have been applied to aid robot navigation and predict pedestrian behavior.
[Ziebart et al., 2009, Kretzschmar et al., 2014]

Work by [Baker et al., 2009] demonstrates people reason about others as
deliberative agents as well. This inverse planning framework elegantly cap-
tures aspects of the human “Theory of Mind.” Work in operations research
and econometrics, particularly by Rust [Rust, 1992, 1994], derives predictive
distributions by developing a framework for learning cost functions and
predictive stochastic policies for agents acting according to a Markov De-
cision Process (MDP). Intriguingly, the same policy structure and dynamic
programming algorithms derived from a maximum entropy formulation are
developed from considering an economist with only partial access to the pre-
diction problem and including “shocks” in a model of what would otherwise
be optimal behavior. These close connections between operations research,
control theory and machine learning deserve much deeper investigation.

6.3 Structured Prediction as Imitation Learning

At first blush, it seems counter-productive to phrase a supervised learning
problem as one of imitation learning. Isn’t the point of this article that imita-
tion learning is a harder problem then that of supervised learning? However,

an invitation to imitation 67

the relationship between the two is more subtle than this simple picture sug-
gests. Within supervised learning, we often consider problems of structured
prediction where the goal is to make a set of inter-related predictions – for
instance, to semantically label all of the pixels within an image (e.g., Figure
6.2.6) or to turn a sentence into a parse tree. [Daumé III et al., 2009] suggests
that a natural way to think about structured prediction is to consider it as
predicting a sequence of decisions – e.g. what to label a particular pixel given
current guesses of labels – and moreover that the expert we are imitating is
simply the ground truth. 17 17 Hal Daume at a NIPS workshop first

clearly expressed to me the notion that
we should often think of supervised
learning problems as being imitation
learning problems in disguise. This
viewpoint has certainly been addressed
by others – John Langford has par-
ticularly championed the notion that
complex prediction problems should
be thought of in terms of reductions to
simpler problems.

From this viewpoint, structured prediction problems are merely de-
generate versions of imitation learning problems, where the teacher can
be specified algorithmically based on training data and the dynamics of
the environment are particularly simple. When viewed through this lens,
structured prediction problems suffer the same difficulties as problems of
imitation learning. Predictions of some random variables (e.g., pixel classes)
influence future predictions of other pixels and a naive training of such an
architecture leads to disastrous compounding of errors.

For instance, consider the inference machine approach of [Munoz et al.,
2010, Ross et al., 2011b]. The central idea is to consider labeling an image
or point cloud sequentially in a pattern mimicking that of highly effective
graphical model inference algorithms like mean-field or belief-propagation. We
iteratively pass through each pixel and label it using a combination of (a)
features that describe that particular visual element (e.g. texture, color) as
well as (b) the currently predicted labels of visual elements that are nearby.
The use of such nearby elements for predictions enables effective contextual
reasoning. It’s easier to distinguish a tree trunk from a telephone pole if we
know that the material located above it is vegetation. Such contextual rea-
soning has traditionally been approached through the lens of probabilistic
graphical models. We first learn a templated parameterized probabilistic
model, then use approximate inference techniques to infer random variables
in that model. The imitation learning approach makes the inference proce-
dure itself the model. 18 18 It is natural to view the inference

machines in the language of deep
modular neural networks [LeCun et al.,
1998, Bengio, 2009] – an inference
machine is a very deep set of repeated
predictions about a particular visual
element or other random variable.
An alternative to the iterative training
procedures espoused here includes a
direct backpropagation of errors of final
predictions made about such nodes.
Interestingly, however, such results
limit our prediction algorithms (no
random forests!) and may not always
be an optimal approach. Investigating
when backpropagation can effectively
tune the parameters of an inference
machine remains an important subject
for research.

Shih-En Wei, Varun Ramakrishna,
Takeo Kanade, and Yaser Sheikh.
Convolutional pose machines. In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
pages 4724–4732, 2016

Such techniques— and more generally, applying methods like DAG-
Ger to structured prediction– have been demonstrated to provide state-of-
the-art predictive performance and speed of inference on a wide range of
structured prediction tasks. These include examples from predicting seman-
tic labels for images [Munoz et al., 2010], identifying human poses in images
and video [Ramakrishna et al., 2014], summarizing documents with the
SCP algorithm [Ross et al., 2013c], and a broad range of Natural Language
Processing Tasks [Daumé III et al., 2009, He et al., 2012]. 19

19 Videos of such inference approaches
approaches can be found at the Infer-
ence Machine Website.

6.4 What’s Next?

Only in the past decade has imitation learning come into its own as a prob-
lem distinct – and distinctly important – from the classical ones of reinforce-
ment and supervised learning. The structure of the problem gives us far
more purchase then the general reinforcement learning (RL) problem. But it
also acknowledges that learning may actually affect the world and that the
classic assumptions of supervised learning will lead to poor performance
and compounding errors.

http://www.cs.cmu.edu/~dmunoz/projects/infer_machine.html
http://www.cs.cmu.edu/~dmunoz/projects/infer_machine.html

68 draft: modern adaptive control and reinforcement learning

Apprenticeship: From Imitation to Reinforcement

An important next step is moving from pure imitation to apprenticeship20, 20 Borrowing this phrase from Pieter
Abbeel, who uses it to refer to systems
that combine imitation and reinforce-
ment learning.

which leverages user demonstration but optimizes performance on an al-
ternate metric. Many examples in the literature consider where it can have
significant benefits. For instance, [Nechyba and Bagnell, 1999] demonstrates
a learned speed control for a simulated driving task that is improved by an
RL gradient descent procedure that ensures good performance while at-
tempting to stay as close as possible to demonstration. Similarly, the works
of [Atkeson and Schaal, 1997], [Kober and Peters, 2010] and [Coates et al.,
2009] use exactly same kind of benefits to achieve impressive performance.
Such approaches are even more important when the learning cannot be
interactive– for instance, when learning by watching a video.

Interestingly, theoretical results suggest an enormous practical benefit for
learning from an expert demonstrator – but perhaps not in the way typically
considered. The theories of Policy Search by Dynamic Programming [?],
Conservative Policy Iteration [Kakade and Langford, 2002], and No-Regret
Policy Iteration [Ross and Bagnell, 2014] show that the key to making rein-
forcement learning easier is to identify the distribution of states that a good
policy spends time in (the so-called baseline measure of [?]). Access to such a
distribution makes the problem of a learning an optimal memory-less policy
in a Partially Observed MDP a polynomial-time problem. It also effectively
makes the sample complexity of learning into a policy with generative model
access to a large MDP polynomial in the horizon of the problem.

Such results, however, show no significant benefit for observing what
actions an expert demonstrator might choose – the benefit of this seems
secondary to the benefit of knowing what states are important to focus on.
Understanding practically and theoretically how we can get the best of
imitation and reinforcement learning will be a major area of future research.

Extending Inverse Optimal Control for Imitation Learning.

Much recent work has focused on models for which the optimal control
problem itself can only be approximately solved. 21

21 [Ziebart et al., 2012] and [Dragan
and Srinivasa, 2012] and [Levine and
Koltun, 2012] consider locally quadratic
approximation of the maximum en-
tropy inference problem. [Huang et al.,
2015] has developed a variant of the
maximum entropy IOC that relies on a
combination of function approximation
of the log-partition function and sam-
pling to estimate the gradient. [Ratliff
et al., 2009a] blends the advantages of
IOC-based methods with methods that
directly learn to predict actions.

Such methods and combinations of methods seem likely to dramatically
increase the applicability of this rich class of predictive models and proce-
dures for inferring reward functions.

Putting it together

Perhaps surprisingly, existing techniques rarely consider both aspects of imi-
tation learning I have discussed in this paper: they tend to focus either on the
problem of compounding errors or the need for learning deliberative strate-
gies. As these problems are largely orthogonal, we expect future techniques
for imitation learning will address both issues simultaneously.

	An Invitation to Imitation
	Cascading Errors and Imitation Learning
	Decisions are Purposeful: Inverse Optimal Control
	Structured Prediction as Imitation Learning
	What's Next?

