
7
Moment Matching, GANs, and all that

Introduction

In this chapter we review Inverse Optimal Control from the Maximum En-
tropy perspective and connect these to the general goal of learning proba-
bility distributions from examples. This chapter establishes the key role of
both moment matching/integral probability metrics and a game theoretic
view of learning behavior. This viewpoint allows us to connect IOC and the
Maximum Entropy Principle more broadly to a family of generative models
known as Generative Adversarial Networks. Efficiency is achieved for con-
tinuous control problems via a Laplace approximation and techniques are
studied to learn costs and find anomalies with this approximation.

This chapter extends the previous one by considering methods for learn-
ing cost functions from human demonstration that highlight the intimate
connections between probabilistic inference and optimal control. Moreover,
the approach to Inverse Optimal Control embraced in this chapter estab-
lishes a connection to recent development in Generative Adversarial Networks,
optimal transport, and the general approach of moment matching.

7.1 Decisions are Purposeful: Inverse Optimal Control

7.2 IOC as Moment Matching

Let us consider the problem of matching such expert driver behavior. What
would success mean here? A reasonable requirement might be that:

p(ξ|Γ) ≈ p̃(ξ|Γ)
where we use ξ to represent a trajectory the expert might take, Γ to repre-
sent the general context of the planning problem including environment and
sensor data at a particular time-step, we use p to represent our model dis-
tribution and we use p̃ to represent the empirical distribution of examples.

I’ll ignore here the philosophical quan-
daries around the demonstrations
coming from a probability distribution.
They don’t. It’s simpler to imagine
they do for the purposes of this work
and defer a generalization to regret
and other non-probabilistic notions of
performance to another time.

A weaker condition that we’ll work with here is that,

E ˜p(Γ)[p(ξ|Γ)] ≈ E ˜p(Γ)[p̃(ξ|Γ)]
Throughout the remainder of this work, we’ll largely suppress the depen-
dence on the context Γ. Near the end, we’ll consider stronger notions than
the average case performance.

70 draft: modern adaptive control and reinforcement learning

How, then, should we make it so that p(ξ) ≈ q(ξ) (where in general q
is a distribution, often the empirical one p̃) in a manner that is empirically
measurable, and where we only have sample access to q (and might prefer
for engineering reasons to only require sample access to p)? Let us consider
first a finite set of cost functions F that measure, according to some notion,
how good a trajectory is. We might then require that the demonstrations and
the learned model achieve the same costs for each of the cost functions: 1 1 We might prefer, instead that the

learned model has a lower cost,
E ˜p(Γ)[p(ξ|Γ)] ≤ E ˜p(Γ)[p̃(ξ|Γ)]. This
is also easy to implement, (and covered
in generality in) but if F is closed
under negation (f ∈ F ⇒ − f ∈ F) then
meeting the inequality immediately
implies we meet the equality.

K. Waugh, B. D. Ziebart, and J. A.
Bagnell. Computational rationalization:
The inverse equilibrium problem. In
Proceedings of the International Conference
on Machine Learning, June 2011

∀ f ∈ F , Ep[f] = Eq[f] (7.2.1)

Moment matching

This constraint, Equation 7.2.1, is known as a moment matching constraint.
We note the important property that moment matching implies that for the
much broader class of cost functions composed of linear combinations of F ,
Flin = {∑i λi fi| f ∈ F}, we also have

∀ f ∈ Flin, Ep[f] = Eq[f] (7.2.2)

That is, moment matching under a set of cost functions, also implies match-
ing all linear combination of such moments.

Prove it in the margin.
Classes of moments. The classical moments are the monomials, e.g.

x2
1x4

3x5. Classic results, perhaps unsurprisingly, indicate matching all mono-
mial moments implies convergence in distribution. Matching all bounded
functions implies that the total variation distance between distributions is 0.
2. A more classic set of functions relevant to robot motion planning including 2 Bharath K. Sriperumbudur, Arthur

Gretton, Kenji Fukumizu, Gert R. G.
Lanckriet, and Bernhard Schölkopf.
A note on integral probability metrics
and ϕ-divergences. 2009. URL
http://arxiv.org/abs/0901.2698

quadratic hinges on an individual variable 3 max2(0, xi), or generalized to

3 N. Ratliff, M. Zucker, J. A. Bagnell,
and S. Srinivasa. Chomp: Gradient
optimization techniques for efficient
motion planning. In ICRA, 2009b

max2(0, g(x, Γ)) for a class of functions g.

From moments to metric

We can allow slack in the notion of moment matching and provide a distance
metric (divergence) between probability distributions. We denote by

We consider here the case that the class
F is symmetric and I blithely ignore the
difference between a supremum and a
maximum.

DF (p, q) = max f∈FEp[f]− Eq[f] (7.2.3)

the Moment Matching Metric also known as the Integral Probability Metric
associated with F . That is, we measure the difference between distributions
by considering the worst-case gap between them in the class of cost functions
F .

If the function class is a Reproducing Kernel Hilbert Space of fixed norm,
this metric is known as Maximum Mean Discrepancy 4, while if the class of 4 Bharath K. Sriperumbudur, Arthur

Gretton, Kenji Fukumizu, Gert R. G.
Lanckriet, and Bernhard Schölkopf.
A note on integral probability metrics
and ϕ-divergences. 2009. URL
http://arxiv.org/abs/0901.2698

functions is all 1-Lipshitz continuous ones, this metric is equivalent to the
earth mover distance.

Measuring by samples

This definition of divergence between distributions is useful both because
it captures the important distinctions in a concrete notion of cost, but also
because expectations can be measured by only observing samples. If we
have, for instance, a single f to consider in our cost function space, the strong
law implies immediately 1

N ∑i f (ξi) → Ep[f] for paths drawn from p(ξ),

http://arxiv.org/abs/0901.2698
http://arxiv.org/abs/0901.2698

moment matching, gans, and all that 71

and we can bound the error in this estimate with high probability, typically
as a rate of ε = O(1√

N
). Intuitively this follows from the observation that

the variance of a sum of i.i.d. random variables is linear in the number of
samples and hence that the standard deviation of an average of random
variables must decrease as O(1√

N
).

For broad classes of cost functions we are basically solving a classical
supervised learning problem: finding the function f that maximally distin-
guishes between p and q. If we take a gradient of equation 7.2.3 with respect
to the function f and then take a random instance, we find an (unbiased)
estimate of the gradient is:

f (ξp)k(ξp, ·)− f (ξq)k(ξq, ·)

in an RKHS— replace k with a delta function or an indicator function as
appropriate for the space), where f is the element of F that is the current
linearization point.

Entropy Regularization

In general, we can only approximately estimate moments from samples.
For a finite number of moments, there will be many distributions that are
consistent with the moments known. A classic approach to breaking this
ambiguity is the maximum entropy method that prescribes assigning the
highest entropy distribution consistent with the known moment constraints.
That are many justifications of this principle (see 5) that are more-or-less 5 E. T. Jaynes. Probability theory: The

logic of science. Cambridge Uni-
versity Press, 2003; and Peter D.
Grunwald and A. Philip Dawid.
Game theory, maximum entropy,
minimum discrepancy and robust
bayesian decision theory, 2004. URL
http://arxiv.org/abs/math/0410076

compelling depending on applications. Such regularization has proven

Interestingly, such entropic regulariza-
tion occurs in purely computational
settings as well from AdaBoost to
Sinkhorn iterations where it break am-
biguities and leads to fast, numerically
stable algorithms.

critical in inverse optimal control applications. The probabilistic viewpoint
leads to a well-defined answer to modeling imperfect “optimal” behavior
while managing the ill-posedness of equally good solutions.

The result sets up an optimization problem:

maxp H[p(ξ)] (7.2.4)

s.t.∀ f ∈ F , (7.2.5)

Ep[f (ξ)] = Eq[f (ξ)] (7.2.6)

where q is typically the empirical distribution over observed paths, p̃.
Is it easy to relax the equality above with slack via the moment matching

metric,
max f∈FEp[f]− Eq[f] ≤ ε

We defer that now, except to note that slack in the primal, MaxEnt problem,
corresponds to regularization in the dual parameters – a beautiful result due
to Dudik et al. [2004]. It’s interesting to note that the duality

viewpoint suggests that we should
often actually measure a divergence
not by its maximum over F , but by
the L2 norm of the violations. I’m
unaware of that being explored in the
probabilistic literature, but it is much
more natural notion of approximate
moment matching than IPMs for many
applications.

The resulting Lagrangian optimization problem is a game between two
players. A generator p(ξ) that computes the best distribution, and a cost
function (weighting) λ attempts to discriminate between the two distribu-
tions. Some techniques, like GANs, attempt to solve the problem by a saddle
point finding approach. This is a potentially powerful approach for IOC 6.

6 Jonathan Ho and Stefano Er-
mon. Generative adversarial im-
itation learning. 2016. URL
http://arxiv.org/abs/1606.03476

However, the industry standard, if you’ll oblige, is to solve for the optimal
generator p in closed form. Given a function class Flin that is closed under
linearity, we can conclude

p(ξ) =
exp(−cost(ξ))

Z
(7.2.7)

http://arxiv.org/abs/math/0410076
http://arxiv.org/abs/1606.03476

72 draft: modern adaptive control and reinforcement learning

where in the linear case for a set of features of a path φ(ξ), we have cost =

λTφ(ξ).
Given the form, the goal now is only to compute the cost function, or

equivalently it’s parameters (λ).
Derive this in the margin using Lagrange multipliers.

Markov structure

We being by considering a problem with structure defined by cost f (ξ) =

∑t cost(xt, ut) and markov transition dynamics xt+1 = h(xt, ut). For the
linear case we write such costs as λTφ(x, u), for a set of feature functions φ.
This structure makes it (exponentially in T) more efficient to find solutions
and corresponds to the classical structure of optimal control. The general case of stochastic dynamics

is handled in Ziebart et al. [2013],
and requires more careful reasoning
about causal entropy, but the resulting
algorithms are largely identical.

We note in all cases there is nothing essentially different about making
each weight or cost a function of t and that this could be useful for receding
horizon control where our uncertainty about the future grows rapidly. 7

7 Having variable costs as a function
of time (at least without exponential
damping) can, however, lead to incon-
sistent decision making. For instance,
an agent might always choose to defer
expensive decisions to the future, where
costs are lower, as during training, "the
future never arrives". This is closely
related to the problems of off-policy
imitation described in the previous
chapter.

If we want to compute derivatives with respect to λ, we should find
the optimal generator p and then eliminate to form a dual optimization
depending only on the costs (i.e. only on the variable λ rather than p). A
quick computation of the derivatives with respect to λ after eliminating p
gives us:

∑
t

Ep[φ(xt, ut)]− Eq[φ(xt, ut)]

where Eq[φ(xt, ut)] is typically a constant estimated by observed data (i.e.
q = p̃). Optimization then boils down to computing expectations under
the model efficiently Ep[φ(xt, ut)]. We can do this via a dynamic program-
ming algorithm (effectively inference in a random field) which is precisely
equivalent to classical value iteration with the min replaced by log ∑ exp, aka
softmin. The forward pass can then be computed analytically or via samples
by noting

p(ut|xt) ∝ exp(−Qt(xt, ut))

where Qt(xt, ut) = cost(xt, ut)+Vt+1(xt+1) and Vt+1(xt+1) = softminuQt+1(st+1, u).
This can then be pushed through forward dynamics. In general, we can view
the backwards pass as transforming an undirected graphical model into a
directed one, and then employing an ancestral sampling procedure (or exact
forward integration) to compute expectations.

This recursive definition enables an optimal policy computation for a
tabular model and suggests methods to enable approximation in the non-
tabular case.

Scaling to continuous trajectory generation

We’re typically interested in high dimensional continuous control problems.
Some powerful tools exist here for inference including Monte-Carlo meth-
ods and Vernaza’s value-function symmetry method8. The simplest version 8 P. Vernaza and D. D. Lee. Efficient

dynamic programming for high-
dimensional, optimal motion planning
by spectral learning of approximate
value function symmetries. In IEEE
International Conference on Robotics and
Automation (ICRA), 2011

however is the Linear-Quadratic / Gaussian model. This was first developed
by 9 (following Ratliff’s thesis version of IOC for LQR). We can follow the

9 B. D. Ziebart, J. Andrew Bagnell, and
A. K. Dey. Modeling interaction via the
principle of maximum causal entropy.
In Proceedings of the 27th International
Conference on Machine Learning, 2010

development presented in Ziebart, or take an alternate approach of approxi-
mation. In particular, we can consider the Laplace approximation where we
find the most probable trajectory ξ∗ and a quadratic expansion about it to
compute approximate partition functions, entropy, variances, samples and

moment matching, gans, and all that 73

expectations. Under linear dynamics and a quadratic cost function, the true
distribution on both actions p(ut|xt) and on states are Gaussian and thus the
approximation is actually exact.

In the absence of these, the technique is an approximation, albeit a pow-
erful one. The key idea is to leverage a family of techniques based on Differ-
ential Dynamic Programming 10 to compute efficiently the best (and thus most 10 D. H. Jacobson and D. Q. Mayne.

Differential Dynamic Programming.
Elsevier, 1970; C. G. Atkeson. Using
local trajectory optimizers to speed
up global optimization in dynamic
programming. In Advances in Neural
Information Processing Systems (NIPS),
1994; and Yuval Tassa, Tom Erez, and
Emanuel Todorov. Synthesis and
stabilization of complex behaviors
through online trajectory optimization.
In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference
on, pages 4906–4913. IEEE, 2012

probable) action as a policy ut|xt and the curvature in the action-value func-
tion as a function of u, denoted Quu. This quadratic approximation in value
(cost-to-go) provides a Gaussian approximation of action-selection which
enables both efficient inference and easing understanding.

Note crucially that such methods as DDP (and iLQR and variants) provide
a complete feedback policy and an estimate of the cost-to-go that depends
on the state we arrive in. Equivalently, in probabilistic terms, they provide a
sequence of ancestral conditional distributions rather than merely marginals.
11

11 This point turns out to be an impor-
tant difficulty in creating constraints
in LQR or in probabilistic inference
algorithms— in either case many
methods lose they key advantage
of a feedback policy and regress to
only optimization. LQR is not only
optimization– it’s a full policy. This
point is addressed further below.

We begin below by describing a Laplace approximation based sampler.
It assumes a differential dynamic programming procedure has already been
called that provides gain matrixes and control biases, as well as curvatures.
The notation here matches that used by Tassa et al. [2012].

1 # Take an i n i t i a l s t a t e x0 , a model of forward dynamics f : s t a t e , a c t i o n −> s t a t e ,
2 # a sequence [] of Quu curvature approximations (c o n d i t i o n a l p a r t i t i o n f u n c t i o n s) , and
3 # gain matr ices/v e c t o r s K, k computed via a D i f f e r e n t i a l Dynamic Programming
4 # method , and a maximum time T
5 def Sample (x0 , f , Quu , K, k , T) :
6 x = [x0] # s t a t e sequence
7 u = [] # a c t i o n sequence
8 f o r t in range (T) :
9 π = Normal (k [t] + K[t] x [t] , Quu (t) ^−1)

10 u . append (Sample (π))
11 x . append (f (x [t] , u [t]))
12 re turn (x , u)

LQR forward sampler

We note however, that in the spirit of receding horizon, model-predictive
control, we can actually do better. Once we have begun sampling, we can re-
linearize and resolve the optimal control problem that results from arriving
at state x1. This suggests an O(T2) procedure which samples ancestrally and
recomputes the optimal gain matrices and curvatures as it advances. We
outline this in pseudo-code below.

1 # Take an i n i t i a l s t a t e x0 , a model of forward dynamics f : s t a t e , a c t i o n −> s t a t e ,
2 # a c o s t funct ion c o s t : s t a t e , a c t i o n −> R , a maximum time T ,
3 # and a procedure DDPSolve : f , cost , s t a t e , i n t e g e r −−> a tuple of
4 # ([gain Matrix K] , [gain vec tor k] , [quadrat ic approximation of Q_uu]) , each a time varying
5 # sequence computed via a D i f f e r e n t i a l Dynamic Programming method .
6 # I t re turns a s i n g l e sample t r a j e c t o r y of s t a t e s and c o n t r o l s .
7 def Sample (x0 , f , cost , T , DDPSolve) :
8 x = [x0] # s t a t e sequence
9 u = [] # a c t i o n sequence

10 f o r t in range (T) :
11 (k , K,Q) = DDPSolve (f , cost , x [−1] , T) # compute optimal gain matr ices
12 π = Normal (k [0] + K[0] x [0] , Quu [0]^−1)
13 u . append (Sample (π))
14 x . append (f (x [0] , u [0]))
15 re turn (x , u)

Re-linearized MPC LQR forward sampler

In the above procedure, care must be taken with passing around a con-
text Γ: the context should remain unchanged during the sampling and all
time-varying costs must be indexed according to the correct time, as the
DDPSolve() routine is unaware that the time-steps are changing in the outer
loop of the algorithm.

74 draft: modern adaptive control and reinforcement learning

Figure 7.2.1: Both images depict
sample trajectories drawn from
a Gaussian approximation, com-
puted via Differential Dynamic
Programming, of the maximum
entropy distribution for a an au-
tonomous vehicle. The left image
shows the naive Gaussian sampling
procedure. Note the expansion in
time at approximately O(

√
T) of

the lateral position of the vehicle.
The red boundaries shown, which
are expensive to violate, do not
impact the mode trajectory, and
therefore they do not affect the
Gaussian sampling approximation.
In the right figure, we explore the
use of a sampler that iteratively
re-linearizes and resolves after each
step in ancestral sampling from
x0. By contrast, we see two basins
(corresponding to lanes), and we
note the lateral position of the tra-
jectories is strongly influenced by
boundaries.

Learning cost functions from samples

We have already seen how a straightforward gradient can be computed
from the difference of Ep[φ] and its empirical version Ep̃[φ]. Let’s consider
expanding to a space of functions and learning using samples. We begin by
replacing λTφ(x, u) by cost(x, u) from a linear space of cost functions (that is,
closed under linear combination).

There are three general strategies for learning such cost functions, and
perhaps surprisingly, they are all actually closely linked. The first two can
be understood as generically gradient descent in a space of functions (1)
Boosting and (2) Kernel Gradient Descent, while the final one (3) parametric
gradient descent in a function class, is the older and at times most computa-
tionally efficient approach. 12 12

Kernel gradient descent is nearly
the same as boosting with a particular
class of weak learners, while in a
particularly important, infinite-width
limit, parametric gradient descent
on a deep, non-convex function class
behaves precisely as a kernel gradient
descent including convergence to
a global optimum and appropriate
regularization guarantees.

Arthur Jacot-Guillarmod, Franck
Gabriel, and Clement Hongler. Neural
tangent kernel: Convergence and
generalization in neural networks. In
S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances
in Neural Information Processing
Systems 31, pages 8580–8589.
Curran Associates, Inc., 2018.
URL http://papers.nips.cc/paper/

8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.

pdf

Taking the MaxEnt family p(ξ) ∝ exp−cost(ξ) and plugging it into the
maximum entropy problem Equation 7.2.4 yields a maximum likelihood
problem over the space of functions. 13 An unbiased estimate of that gradi-

13 Check it!

ent can be computed in approach (3) as

∇θcost(ξi)−∇θcost(ξsample) (7.2.8)

where ξi is a demonstration sample and ξsample is drawn from the model
p(ξ). Note the cost function being additive over time, this turns into a batch
of updates, one for each time-step. The functional versions of this procedure
simply generate datapoints indexed by x, u and a positive or negative regres-
sion target. This is demonstrated below for a particular variant of boosting.

The result is at heart a two-sample test and update procedure for learning
cost functions that is essentially equivalent to the Learning to Search proce-
dure outlined. We use here samples of model behavior rather than simply
the most probable/optimal trajectory as in the original algorithm descrip-
tion. The approach is also closely connected to Generative Adversarial Models
(GANs). The key difference is that GANs, unlike the exponential family or
IOC methods, don’t solve for the optimal generator in closed form, but in-
stead update an approximate generator. As a result, inference requires only
forward execution of the generator model and may be better behaved for
singular/constrained-to-a-manifold distributions. The cost is that inference
doesn’t enable building in engineered constraints or cost-function insight.

Solving the game A critical note is that we are indeed solving a game be-
tween generator/policy and discriminator/cost function so we must care-
fully control step size in learning a cost function. Thus it is particularly

http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf

moment matching, gans, and all that 75

important in the family of optimization algorithms above to take constrained
steps, or regularize to prior solutions. The optimization objective for a fixed
inference policy is linear, and hence will run away to infinity in the cost func-
tion update. This is the classic problem of a learning in a game– we have
a stable strategy applied for the outer player while the inner player (policy
generation) is best response. Boosting style methods do this automatically
via their additive model and step size control.

Structured Cost Families

It’s quite natural to write down parametric families of cost functions like
φ(x, u) = max2(0, xi − gθ(x0, Γ)) (for a context variable Γ) where we are at-
tempting to constrain the form of the objective function to be nicely behaved
(single global optimum, strong curvature, multiple derivatives everywhere)
in a variable of interested. This encourages inference to remain efficient and
enables building in engineering insight in cost-function design.

7.3 LEARCH generalized.

In the previous chapter, we discussed a functional gradient approach to solv-
ing the Structured Maximum Margin formulation of Inverse Optimal Con-
trol. That general non-parametric learning strategy is equally applicable to
the MaxEnt framework, as is a parametric “deep variant” enabled through
backpropagation.

We may step through the LEARCH-MaxEnt algorithm on a cartoon ex-
ample to see why it might work. We first consider a path driven by teacher
from a start point to a goal point, then imagine a simple planning problem
on a discretized grid of states that the robot can occupy. Every iteration of
the algorithm consists of the following: (a) computing a sample plan/policy
from our approximate MaxEnt distribution; (b) identifying where the plan
and teacher disagree and creating a data set consisting of features and the
direction in which we should modify the costs; (c) using a supervised learn-
ing algorithm to turn that data set into a simple predictor of the direction to
modify costs; and (d) recomputing a cost function as a (weighted) sum of the
learned predictors.

1 # Take a sequence of t r a j e c t o r y opt imizat ion problems and demonstrations [Mi , ξi)]
N
i=1 where MDP M i s a

planning problem c o n s i s t i n g of s t a t e s , ac t ions , and a t r a n s i t i o n funct ion used f o r planning ,

2 # f e a t u r e funct ion f : s t a t e , a c t i o n −> Rd t h a t d e s c r i b e s s t a t e s in terms of f e a t u r e s meaningful f o r
c o s t

3 # α , a step−s i z e (which can be genera l ized to a shr inking sequence)
4 # R e l i e s on procedures to i n i t i a l i z e the c o s t funct ion ,
5 # and to bui ld an optimal maxent pol icy , and
6 # to sample t h a t po l i cy
7

8 def MaxEntLEARCH({(Mi , ξi)}N
i=1 , f , α) :

9 s0 = i n i t () # I n i t i a l i z e c o s t funct ion , s0 : Rd → R

10 f o r t in range (T) : # run f o r T i t e r a t i o n s
11 D = [] # I n i t i a l i z e the t r a i n i n g data s e t to empty
12 f o r i in range (N) : # f o r each example in the data s e t
13 ci = st (f) # Compute c o s t funct ion f o r t h i s problem
14 π∗i = Optimize (Mi , ci) # f ind (approximately) the r e s u l t i n g MaxEnt pol i cy π∗i (x)

15 # t h a t leads to p(ξ) ∝ exp ∑(x,u)∈ξ ci (x, u)

16 µ∗ = Sample (Mi , π∗i)

17 # µ∗ ’ s conta ins the s t a t e a c t i o n p a i r s from a random t r a j e c t o r y crea ted by the Sampler .
18 # More s o p h i s t i c a t e d samplers might i n t e r l e a v e sampling and " opt imizat ion " .
19 # Generate p o s i t i v e and negat ive t r a i n i n g examples :

20 D
pos
i = [(fi (s, a) , 1) f o r (s , a) in µ∗]

21 D
neg
i = [(fi (s, a) , −1) f o r (s , a) in ξi]

22 # i f the same s t a t e occurs in both samples , we can remove i t

23 D. append (D
pos
i)

24 D. append (D
neg
i)

76 draft: modern adaptive control and reinforcement learning

25 ht = Learn (D) # Train a r e g r e s s o r (or c l a s s i f i e r) ht : Rd−>R on the r e s u l t i n g data s e t
26 # The Data Aggregation i s not required but does a t t imes lead to more s t a b l e performance
27 st+1 = st + αt ht # Update the hypothesis c o s t funct ion
28 re turn sT

MaxEnt LEARCH Algorithm Pseudo-code

As with the previous LEARCH algorithm, we initialize the algorithm by
guessing at a cost function: for instance, by assuming a constant cost every-
where. Instead of a planner, we run the sampler that generates trajectories.
We can identify where the sample path agrees and disagrees with a demon-
stration by a teacher of the correct path. Again, we create a data-point that
contains the features that describe the state and assign it a target value to
increase or lower the cost depending on whether the sample or the teacher’s
path traverses that location.

The same procedure is run for locations of disagreement across multiple
trajectories (that is multiple planning problems). The resulting data set is
then handed to a supervised learning algorithm (linear regression, Support
Vector machines, a neural network) that produces a new predictor which
maps features to a scalar cost.

As with any boosting style algorithm, the proposed cost function is sim-
ply the old cost function added to the new predictor, and we continue to
update it by adding in new components.

MaxEnt Relation to Maximum Margin Planning

If we consider the limiting case of cost(ξ)temp = cost(ξ)
T as T → 0, and use the

gradient/boosting rules above we recover the max-margin approach to cost
function generation. This approximation is less robust (although can prove
very useful!) as it tends to lead to cost function collapses. Intuitively, this
occurs as we see demonstrations that are highly sub-optimal and we can only
generate optimal samples. These will tend to be lower in every element of
the feature vector φ(x, u) and hence the gradient will continue to shrink the
cost. No cost shrinkage, however, leads to higher entropy behavior, and thus
the costs can collapse. As such, for sub-optimal demonstrations, Maximum
Entropy should be preferred whenever it is appropriate. The LQR/Laplace
approximation dramatically increases the places where that is possible, as
sampling from the model is no more expensive than optimization.

7.4 Anomaly Detection

We can identify important actions (or trajectories) by computing

log p(ξexample) = −cost(ξexample)− log ∑
ξ

exp (−cost(ξ))

where the second term comes from the normalizing constant Z and is the
softmin of the path costs. A rough and ready approximation is to simply
compute

log p(ξexample) ≈ −cost(ξexample) + min
ξ

cost(ξ)

which requires only access to an optimal planner rather than sampling or
computing the complete partition function. Demonstrations that have highly
negative log-probabilities should be considered as outliers— the model
poorly captures the behavior.

moment matching, gans, and all that 77

Refined estimates via Laplace Approximation We can, of course, also use the
Laplace (Gaussian) approximation to estimate how many standard devia-
tions a particular control variable is from from the expected (mode/mean)
control. This also makes it easy to make more refined analysis of outliers and
detect plans that are, say, k-standard deviations away from the mean in one
control or state variable axis. For instance, if we have a robotic system with
a clear longitudinal control mode, we can identify points that are 3σ away
in negative longitudinal control. Such anomalies (hard deceleration) can be
important to identify.

We can also plot (or statistically test) the Gaussian approximation of any
state variable and test how far wrong our current model is on any individual
state variable.

Gradients estimates. Given we know that φ(xexample, uexample)−φ(xsample, usample)

is an unbiased estimate of the gradient, we know it should on average be 0
if our model is well fit. Plots of the elements of these gradients provide clear
signal of model under-fitting or failure to set costs appropriately.

Forecasting. Work by [Baker et al., 2009] demonstrates people reason about
others as deliberative agents as well. This inverse planning framework el-
egantly captures aspects of the human “Theory of Mind.” Work in oper-
ations research and econometrics, particularly by Rust [Rust, 1992, 1994],
derives predictive distributions by developing a framework for learning cost
functions and predictive stochastic policies for agents acting according to
a Markov Decision Process (MDP). Intriguingly, the same policy structure
and dynamic programming algorithms derived from a maximum entropy
formulation are developed from considering an economist with only partial
access to the prediction problem and including “shocks” in a model of what
would otherwise be optimal behavior. These close connections between op-
erations research, control theory and machine learning deserve much deeper
investigation.

7.5 Test-time Costs and Constraints

An important power of the approach of model-based IOC, as opposed to
naive policy learning techniques, is the freedom to add new constraints and
cost functions not present in the training data or that are critical to enforce at
test time. Said differently, when generating trajectories for use in anger, we
may wish to further shape these beyond what is represented directly in the
data.

The planning-based approach allows a powerful combination of engineer-
ing design and machine learning integrated through test-time optimization.
The price we pay, of course, is in needing to solve a potentially complex op-
timization problem at test time, and the unfortunate fact that efficient 2nd
order dynamic programming solutions aren’t available in industry-standard
differentiable programming frameworks like Tensorflow or Torch.

We also note that it is often important that test time inference actually be
the most probable trajectory, or at least the temperature lowered dramatically
in sampling. This is imperative for a few reasons, notably that: a) we usually
want the best solution at test time, not a sample one and b) likelihood and

78 draft: modern adaptive control and reinforcement learning

entropy based models are strongly incentivized to “cover” and explain the
data available to them rather than simply provide the optimal generation. 14 14 Massimo Caccia, Lucas Caccia,

William Fedus, Hugo Larochelle,
Joelle Pineau, and Laurent Charlin.
Language gans falling short. CoRR,
abs/1811.02549, 2018

Policies, Probabilities, and Constraints

An important part of both the Bellman Equation (in its many instantiations
including LQR) and the MaxEnt Inverse Optimal Control formalism is that
it computes policies rather than trajectories. A notable difficulty arises in
combining either technique with hard constraints. We can use primal-dual
(lagrangian) methods for identifying the most probable trajectory, but both
feedback policies and conditional distributions break down with these tech-
niques. It’s unclear if it’s possible to achieve the best combination of primal-
dual and policy/probabilistic approaches. This failure tends to privilege
reparameterization based techniques as both feedback and uncertainty can
still be sensible. These tend to require more careful design than primal-dual
methods, at least for strictly enforcing constraints.

Acknowledgements

We thank colleagues Brian Ziebart, Arun Venkatraman, and Wen Sun for
tremendous insight in this area and many productive conversations. The
images of sampling and the implementation used for differential dynamic
programming are due to Arun Venkatraman.

	Moment Matching, GANs, and all that
	Decisions are Purposeful: Inverse Optimal Control
	IOC as Moment Matching
	LEARCH generalized.
	Anomaly Detection
	Test-time Costs and Constraints

