
8
Approximate Dynamic Programming

Approximate Dynamic Programming (ADP), also sometimes referred to as
neuro-dynamic programming, attempts to overcome the limitations of value
and policy iteration in large state spaces where some generalization between
states and actions is required due to computational and sample complexity
limits. Further, all the algorithms we have discussed thus far require a strong
access model to reconstruct the optimal policy from the value function and to
compute the optimal value function at all. We’ll consider algorithms in the
rest of these lecture notes that relax this strong notion of access.

Access Models

Up until this chapter, we’ve implicitly largely assumed that we have com-
plete, white box access to a full description of the system dynamics for the
purposes of applying dynamic programming. In practice, reinforcement
learning problems differ by the degree of “system access” that is available.
For the Tetris problem we often assign as homework for this class, we can
recreate the exact same state over and over again while learning (or testing
our algorithms). For robotic systems, we typically have a weaker form of ac-
cess – we can never create exactly the same state again, but we can often run
multiple trials. It’s worth reviewing here some notions of access model for a
system as the techniques we can apply and which will be most effective are
largely governed by this access. We review them in order of the strength of
the model access; each of the earlier access models can trivially simulate the
ones below it, but not (necessarily) visa-versa.

1. Full Probabilistic Description

In this model, we have access to an explicit cost function and the transi-
tion function for every state-action written down as a large matrix that
can be manipulated. A major downside of having this kind of model is
that it easily can become so large as to be computationally intractable for
a non-trivial problem. It is also information-theoretically hard to identify
this type of model from data– it simply isn’t possible to visit a very large
state-space.

2. Deterministic Simulative Model In the simplest version, we have a func-
tion that maps f (x, a) → x′, deterministically. 1 More broadly, a de- 1 We’ll assume through the discussion

below that the cost function has the
same access. It can be the case, however,
that we can be “in between” such
models. For instance, we might have
a more complete description of a
cost function as a quadratic, while
only having reset model access to the
dynamics.

terministic simulative model can mean that we while the dynamics are
stochastic, we have access to the random seed in a computer program, so

80 draft: modern adaptive control and reinforcement learning

we can recreate trajectories including the randomness that occurred. Such
access is what is typically available in computer simulations. 2 2 Although, unfortunately, non-

determinism in simulators is more
prevalent than one might expect.3. Generative Model

In this model, we have programmatic access. We can put the system
into any state we want.

4. Reset Model
In this model, we can execute a policy or roll-out dynamics any time

we want, and we can always reset to some known state or distribution
over states. This is a good model for a robot in the lab that can be reset to
stable configurations.

5. Trace Model
This is the model that best describes the real world. Samuel Butler said

"Life is like playing a violin solo in public and learning the instrument as
one goes on"; the trace model captures the inability to “reset” in the real
world.

There are a few general strategies one can pursue for applying approxi-
mation techniques.

Approximate the Algorithm. The most straightforward approach is to
take the algorithms we’ve developed thus far Policy Iteration and Value Itera-
tion, and replace the steps where we would update a tabular representation
of the value function with a set of sampled (state-action-next state) and a
supervised-learning function approximator.

This approach is an incredibly tempting way to pursue hard RL problems:
we simply plug in a regression estimator and run existing, known-to-be-
convergent algorithms. In a sense, we can see the tremendously successful
Differential Dynamic Programming approach as of this form: we are finding
quadratic approximations and running the existing value-iteration approach.

We find below that while at times successful in practice, there are many
sources of instability in these algorithms that result in often extremely poor
performance. We analyze informally the two main sources of error: the
bootstrapping that happens in dynamic programming mixes poorly with
generalization across states, and even more significantly, the change of pol-
icy induced by the max operation produces a change in distribution (affects
which state-actions matter most) that dramatically amplifies any errors in the
function approximation process. We discuss some strategies for remediating
these.

Approximate the Bellman Equation. The next broad set of strategies is
to treat the Bellman equation itself as a fixed point equation and optimize
to find a fixed point. These techniques, known as Bellman Residual Techniques
are dramatically more stable and have a richer theory.3 [2] Practically, the 3 L. C. Baird. Residual algorithms:

Reinforcement learning with function
approximation. In International Confer-
ence on Machine Learning, 1995; and Wen
Sun, Geoffrey J Gordon, Byron Boots,
and J Bagnell. Dual policy iteration. In
Advances in Neural Information Processing
Systems, 2018

performance is often (but not always!) worse than methods based on the
"approximate the dynamic programming" strategy above, and it suffers as
well from the change of distribution problem.

Approximate the Policy Alone. We cover a final approach that eschews
the bootstrapping inherent in dynamic programming and instead caches
policies and evaluates with rollouts. This is the approach broadly taken by
methods like Policy Search by Dynamic Programming 4 and Conservative Policy 4 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003

Iteration5. 6

5 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

6 Methods like the Natural Policy
gradient approach that we discuss later
are closely connected.

approximate dynamic programming 81

Action-Value Functions

In this lecture, we consider the finite horizon case with horizon T. The quality
function, Q-function, or action-value function is defined as,

Q∗(x, a, t) = c(x, a) + total value received if optimal thereafter,

Qπ(x, a, t) = c(x, a) + total value received if following policy π thereafter.

These can be restated in terms of the Q-function itself as

Q∗(x, a, t) = c(x, a) + γEp(x′ |x,a)[min
a′

Q∗(x′, a′, t + 1)]

Qπ(x, a, t) = c(x, a) + γEp(x′ |x,a)[Q
π(x′, π(x′), t + 1)]

Note that unlike infinite horizon case where a single value function/action-
value function is defined, there are T value functions/action value functions
for the finite horizon case, one for each time step.

Once we have the action-value functions, the value function V∗ and the
optimal policy π∗ are easily computed as

V∗(x, t) = min
a∈A

Q∗(x, a, t)

π∗(x, t) = argmin
a∈A

Q∗(x, a, t)

We can compare the above equation to how we compute the optimal policy
from the optimal value function,

π∗(x, t) = argmin
a∈A

c(x, a) + γEp(x′ |x,a)[V
∗(x′, t + 1)]

Pros and Cons of Action-Value Functions

Pros

1. Computing the optimal policy from Q∗ is easier compared to extracting
the optimal policy from V∗ since it only involves an argmax and does not
require evaluating the expectation and thus the transition model.

2. Given Q∗, we do not need a transition model to compute the optimal
policy.

Cons

1. Action-value functions take up more memory compared to value func-
tions (|States| x |Actions|, as opposed to |States|).7 7 Note, however, that if we use a value

function instead of Q-function, we
may need another |States| x |Actions|
table to store the transition probability
in order to find the optimal policy
if the transition model is not given
analytically.

Fitted Q-Iteration

We can now describe Fitted Q-Iteration, an approximate dynamic program-
ming algorithm that learns approximate action-value functions from a batch

82 draft: modern adaptive control and reinforcement learning

of samples. Once the data is collected the Q-function is approximated with-
out any interaction with the system.

Algorithm 10: Fitted Q-iteration with finite horizon.

Algorithm FittedQIteration({xi, ai, ci, x′i}n
i=1, T)

Q(x, a, T)← 0, ∀x ∈ X, a ∈ A

forall t ∈ [T − 1, T − 2, . . . , 0] do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γ mina′ Q(x′i , a′, t + 1)
D+ ← D+ ∪ {input, target}

end
Q(·, ·, t)← Learn(D+)

end
return Q(·, ·, 0 : T − 1)

The algorithm takes as input a data-set D which contains samples of the
form {state, action, associated cost, next state}. In practice, this is obtained by
augmenting expert demonstration data with random exploration samples.
As in value iteration, the algorithm updates the Q functions by iterating
backwards from the horizon T − 1. Essentially, for each time step t, we create
a training data-set D+ by using the learned Q function learned for time
step t + 1. This data-set is fed into a function approximator Learn, which
could be any of your favorite machine learning models (linear regression,
neural nets, Gaussian processes, etc), to approximate the Q function from the
training dataset. We could also start with an initial guess for Q(·, T). 8 8 The version presented here assumes

the dynamics and cost functions are the
same at each time-step.

Note that the above fitted Q-iteration algorithm can be easily modified to
work for infinite horizon case. In fact, the infinite horizon version is simpler,
because we can choose to maintain a single Q function. Hence, for each
iteration, we can just collect a batch of samples, and update the Q function.

Algorithm 11: Fitted Q-iteration with infinite horizon.

Algorithm FittedQIteration({xi, ai, ci, x′i}n
i=1)

Q(x, a)← 0, ∀x ∈ X, a ∈ A

while not converged do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γ mina′ Q(x′i , a′)
D+ ← D+ ∪ {input, target}

end
Q← Update(Q, D+)

end
return Q

There are a few of things that we need to be aware of when using fitted
Q-iteration in practice:

• In a goal-directed problem, we need to make sure that our samples in-
clude goal states in order to get meaningful iterations.

• Often it makes sense to run the algorithm on features of the state-action

approximate dynamic programming 83

pair (x, a), not the raw state-action pairs themselves.

• Fitted Q-iteration can be run repeatedly, augmenting the data set with
new samples from the resulting policies.

• For goal-directed problems, the goal states xi are nailed down to 0 Q-
value (target = ci), and bad or infeasible states are provided a large con-
stant target value c−. The former ensures that the Q-values do not drift
up over time, and the latter prevents the Q-value for bad states from
blowing up to ∞.

• Value functions are not smooth in general (e.g. mountain car problem).
A simple trick to fix this is to add noise to the transition model, which
smooths out discontinuities.

Case Study

A robotics example of work using Fitted Q-Iteration is demonstrated in 9 9

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3532&rep=rep1&type=pdf
The authors demonstrate that a neural (in modern parlance, “deep”) fitted

Q-learning algorithm can learn a control strategy from scratch for driving
a car along a GPS-guided course, minimizing cross-track-error (distance
of vehicle to one side of a straight line between waypoints). All data for
learning came from actual driving; i.e. there is neither a model nor a use of
data-augmentation. As has been, perhaps surprisingly, common in robotics,
the actual network is a relatively shallow 3 layer neural net for regression.
This contrasts with work for imitation learning of driving controllers like that
of 10 where very deep networks were used. 10 M. Nechyba and J. A. Bagnell. Stabi-

lizing human control strategies through
reinforcement learning. In Proc. IEEE
Hong Kong Symp. on Robotics and Control,
volume 1, pages 39–44, April 1999

8.1 Challenges when using Fitted Q-Iteration

Unfortunately, while in the tabular case (maintaining a value for each state-
action pair) the Q-function function converges 11 as the number of iterations 11 Under suitable assumptions discussed

earlier.of value-iteration (or policy-iteration) steps increases to ∞, this does not
generically hold under function approximation. The value function might
converge, diverge, oscillate, or behave chaotically. Perhaps worse, meaningful
bounds on the resulting performance of a policy learned using value function
approximation can be either hard to obtain or vacuous.

Fitted Q-iteration and Fitted Value Iteration (a similar algorithm as fitted
Q-iteration but approximates the value function and counts on a model to
find optimal controls), especially the infinite horizon version, is prone to
bootstrapping issues in the sense that sometimes it does not converge. Since
these methods rely on approximating the value function inductively, errors
in approximation are propagated, and, even worse, amplified as the algorithm
encourages actions that lead to states with sub-optimal values.

The key reason behind this is the minimization operation performed
when generating the target value used for the action value function. The
minimization operation pushes the desired policy to visit states where the
value function approximation is less than the true value of that state– that is
to say, states that look more attractive than they should. This typically hap-
pens in areas of state spaces which are very few training samples and could,
in fact, be quite bad places to arrive. From a learning theory perspective,

84 draft: modern adaptive control and reinforcement learning

this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J∗.

Continuous Gridworld
J*(x,y)1

0.8

0.6
20
15 10.4 10 0.8
0
5

0.60.2 00
0.40.20.2

0.40.4
0.60.6 0.20

0.2 0.4 0.6 0.8 1 0.80.8
101x

y

Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.

Iteration 12 Iteration 25 Iteration 40

20 20 20
15 15 151 1 1
10 10 100.8 0.8 0.85 5 5
0 0.6 0 0.6 0 0.6
00 00 00

0.4 0.20.2 0.4 0.20.2 0.40.20.2
0.40.4 0.40.4 0.40.4

0.2 0.60.6 0.2 0.60.6 0.20.60.6
0.80.8 0.80.8 0.80.8

10 10 101 1 1

Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.

Iteration 17 Iteration 43 Iteration 127

8 10
-2006 1 0 1 1-300

2
4 0.8 -10 0.8 -400 0.8

-20 -5000 0.6 0.6 0.6
00 00 00

0.20.2 0.40.20.2 0.4 0.20.2 0.4
0.40.40.40.4 0.40.4

0.2 0.60.6 0.20.60.6 0.2 0.60.6 0.80.80.80.8 0.80.8 101110 110

Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.

approximate dynamic programming 85

Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010
1 -25 1 -200 19 -50 -300

-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.

86 draft: modern adaptive control and reinforcement learning

8.2 Approximate Policy Iteration

In the previous section we looked at how approximating the action-value
function can potentially be effective in large state spaces. In this section, we’ll
consider approximating the action-value function for a policy from a batch of
offline data and then improving that policy. The process of evaluating a pol-
icy will be more stable compared with fitted Q iteration as the min operation
will no longer be used in the training loop. As with policy iteration, there
are two fundamental steps involved in approximate policy iteration process
- policy evaluation and policy improvement. We’ll consider how trust-region
and line search techniques can control the change of distribution problems that
results when we update the policy later in later lectures.

Policy Evaluation

Algorithm 12: Approximate policy evaluation with finite horizon

Algorithm Evaluate({xi, ai, ci, x′i}n
i=1, T)

Qπ(x, a, T)← 0, ∀x ∈ X, a ∈ A

forall t ∈ [T − 1, T − 2, . . . , 0] do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γQπ(x′i , π(x′i , t + 1), t + 1)
D+ ← D+ ∪ {input, target}

end
Qπ(·, ·, t)← Learn(D+)

end
return Qπ(·, ·, 0 : T − 1)

In Algorithm 12, improved stability of the function approximation comes
from that fact that we are interested in approximating Qπ and not Q∗. This
kind of stability often turns out to be critical, and many practical RL imple-
mentations favor a policy iteration variant. Naturally, there is also a “batch”

approximate dynamic programming 87

infinite-horizon version of the above algorithm:

Algorithm 13: Approximate policy evaluation with infinite hori-
zon

Algorithm Evaluate({xi, ai, ci, x′i}n
i=1, π)

Qπ(x, a)← 0, ∀x ∈ X, a ∈ A

while not converged do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γQπ(x′i , π(x′i))
D+ ← D+ ∪ {input, target}

end
Qπ ← Update(Qπ , D+)

end
return Qπ

Function approximation induces very significant problems in computing
good policies or value functions. Lets take a closer look at the problems that
result.

Function Approximation Divergence

We consider now the more stable variant–function approximation of the
policy evaluation step alone–rather than the more complex (non-linear) Q-
iteration variant. 13 Even here, Tsitsiklis and Van Roy [6] demonstrate that 13 Below we’ll discuss that the more

difficult to manage problems come from
the changing the policy.

without care, function approximation has the potential to behave very poorly.
Consider the MDP in Figure 8.2.1 has two states S1 and S2. The following

details the setup:

Figure 8.2.1: Two state MDP

1. The reward for being at any state (hence the true value function) is {0, 0}

2. Consider a discount factor γ = 0.9

3. The feature {x} is simply the numerical value of the state {1, 2}

4. The value function is approximated with linear function: V(s)← wT x

The graphical view of the value function approximation is shown in
Figure 8.2.2. Since the reward is always 0, we know the true value function is
{0, 0}. This corresponds to w = 0. We will now examine if the approximation
converges to this value.

Let’s start with w = 1. One round of value iteration yields the following

88 draft: modern adaptive control and reinforcement learning

target values for the function approximator

Vπ(s) = r(s, π(s)) + γV(s′)

V(s1)← 0 + γw ∗ 2 = 1.8

V(s2)← 0 + γw ∗ 2 = 1.8

If a least squares approach is used to fit to this data, we’d arrive at w = 1.2.
Repeated iteration eventually results in the function approximator blowing
up exponentially in the number of iterations iterations/number of backups
that are performed. 14 14 One might hope that the finite hori-

zon variant might not suffer from
divergence in this example. That is
technically correct (observed by Wen
Sun), but is ineffective as the error in-
stead simply grows exponentially in
horizon length).

Some Remedies for Divergence

If the training data is weighted by how much time the agent visits a state,
then divergence problem can be arrested for linear function approximators. In
our example, if we spend t = 1 time-steps in S1, then we spend γ

1−γ = 9
time-steps at S2. If this is used as a weight in the weighted least squares
fitting, then after the first iteration w = 0.92, i.e, it proceeds towards the
correct value 0. This on-policy weighting, where the loss is weighted by the
time spent in each state can be demonstrated to ensure convergence. Unfor-
tunately, the same result does not hold for a more general class of function
approximators. [6] An entire literature has grown up around attempts to
maintain the advantages of approximating the dynamic programming it-
erations while ensuring convergence in more general settings. Sutton and
Barto’s book 15 extensively covers these efforts and is highly recommended. 15 R. S. Sutton and A. G. Barto. Rein-

forcement Learning: An Introduction. MIT
Press, 1998

Figure 8.2.2: Approximate
Value Function Iteration

Policy Improvement

The second step of the Approximate Policy Iteration process is to update or
improve the policy. We select a new policy by simply acting greedily with
respect to the estimated Q-function of the old one:

π′(x, t) = arg
a

min Qπ(x, a, t) (8.2.1)

In API we have moved the dominant form of instability to this step of the
process.

The Central Problem of Approximate Dynamic Programming

We discussed before the problem of value function approximation over-
estimating how good it thinks a state is, and then this error amplifying as

approximate dynamic programming 89

T-1T-2T-3

Approximated Q

True Q

Upper half of state
is BAD

Lower half of state
is GOOD

Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between

17 That is to say, choose with that prob-
ability at each time-step of execution of
the policy.

policies πnew = απnew greedy + (1− α)πold, where the mixing weight α is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing α that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line

90 draft: modern adaptive control and reinforcement learning

search or trust-region constraints. We defer discussion of these methods to
the Policy Search chapter ??.

Interestingly, there becomes no clear line between the modern, controlled
Approximate Policy Iteration algorithms and algorithms that are variants of
Policy Gradient. When an action-value function estimator is used that “boot-
straps” using Bellman updates, we tend to view them as API algorithms.
When the updates are made using pure roll-out estimates, we tend to view
them as “policy gradient” algorithms. In practice, the distinction in practical
use of the terms is somewhat artificial.

8.3 Policy Search by Dynamic Programming

Our focus thus far has been on Bellman bootstrapping and approximating the
value function either of a given, or optimal, policy. Can we use the core idea
of dynamic programming without bootstrapping values? Richard Bellman’s
thoughts shed some light on this issue:

“An optimal policy has the property that whatever the initial decision
may be, the remaining decisions constitute an optimal policy [for
the resulting state]”

The central idea of dynamic programming is that it does not matter how
a decision maker arrives at a state; rather, what matters is that given arrival
at the state, the decision maker chooses optimally thereafter. This insight
allows us to solve problems recursively. This notion is related to the mono-
tonic improvement of policy iteration. If we cache policies and re-estimate
the value function at every iteration backwards in time, we avoid the over-
estimation and compounding errors problem discussed above as we get
unbiased estimates of the real costs that will occur in the future, and errors
are not amplified as we proceed through iterations.

Let’s try and make this intuition about caching policies concrete. As is
standard in dynamic programming, we proceed backwards (over a finite
horizon) from T − 1. At iteration T − τ, instead of memoizing (approx-
imately) a value function in the future and bootstrapping from that, we
memoize just the policies in the future and “roll-out” the total cost of an ac-
tion and future policy decisions all the way to T − 1. A new policy is learned
via estimating an action-value function at T − τ. 22 for a single time step 22 Or, often more powerfully, simply

optimizing the policy directly to choose
actions with high future returns.

given the rollouts. A new policy is installed at the time-step T − τ. Let’s walk
through how this works below.

A Sketch of an Algorithm

Let’s see what it might look like to use dynamic programming without mem-
oizing values:
Time T− 1:

We can approximate π̃∗,T−1(x) = arg
a

min c(x, a) either analytically or via

sampled states from a (for now fixed) distribution µT−1(s) which we’ll call
the baseline distribution. We’ll assume for now that actions are simply chosen
uniformly at random 23. This forms our approximation of the optimal policy 23 Or that all of them are tried instead

for a given state! That has lower vari-
ance, but requires a reset access model
that lets us return to the exact same
state.

at T − 1.
Time T− 2:

approximate dynamic programming 91

For any sampled input pair {xi, ai}, the target value is c(xi, ai)+ c(x′, πx′ ,T−1).
So an error in approximation of π does not bootstrap, it shows up as the pol-
icy is always evaluated honestly. However, we again need to specify a distri-
bution of states to optimize with respect to, µT−2(s), and given these samples
can attempt to find a one-step optimal policy π̃∗,T−2(x) that minimizes the
average cost under the distribution of samples.

Similarly now for any k, (starting with k=2 and moving backwards in
time) we can compute: Time T− k:

For a sampled input pair {xi, a}, the target value is c(xi, ai)+ c(x′, πx′ ,T−k+1)+

c(x′′, πx′ ,T−k+2 + · · · .
Note that this approach address the problem of learning over an exponen-

tially large set of policies, but it does with a quadratic in horizon T depen-
dence, rather than the linear in T dependence that is achieved by policy or
value iteration. 24 24 Of course, whether this is cost is

“worth” it or not depends on both the
horizon length and how much errors
are amplified by backups.

The Baseline distribution

Note that the algorithm requires a distribution µt(s) from which to draw
sample states (as do any of the batch fitted iteration methods). This presents
something of a chicken-or-the-egg situation as intuitively (and which we’ll
quantify below) we’d like to sample states from where the optimal policy
would visit. This kind of requirement of having an idea of where to sample
states is fairly common though: The PSDP approach was partially inspired
by the work of 25 and by differential dynamic programming (DDP) generally 25

where policies are generated using as input an initial sample of trajectories.
An insight provided by that paper is the usefulness of having information
regarding where good policies spend time. This can come from a heuristic
initial policy or demonstration by an “expert” at a task. The idea of baseline
distribution is the natural probabilistic generalization of an initial trajectory.

In essence, the baseline distribution tells our learners where to focus their
effort, and shortcuts the the difficulties of global exploration. We count on the
reset access model and the baseline distribution to solve the hard problem
of identifying and getting to states that really matter. We’ll spend more time
in later lectures discussing baseline distributions and exploration as the
general idea of leveraging a baseline distribution is a powerful “cheat” that is
equally applicable to policy search/gradient methods as it is to the dynamic
programming ones mentioned here.

PSDP as classification

With the crude sketch of a meta-algorithm in hand, we can consider a natural
instantiation of PSDP using calls to a supervised learning classification

92 draft: modern adaptive control and reinforcement learning

algorithm.

Algorithm 14: PSDP using classification

Data: Given weighted classification algorithm C and baseline
distribution µt(s).

foreach t ∈ T − 1, T − 2, . . . , 0 do
Sample a set of n states si according to µt:
foreach si do

foreach a in A do
Estimate Qa,πt+1 ...,πT−1 (si) by rolling out a trajectory of length

T − t starting from si and using the action a on the
generative model. At each time step after the initial one use
the previously computed (near-optimal) policies to choose
actions.

Compute (dis)advantages: For each sampled state si, compute
the best (highest value) action and denote it a∗i .

Create a training set L consisting of tuples of size |A|n:
〈si, a, Qa∗i ,πt+1 ...,πT−1 (si)−Qa,πt+1 ...,πT−1 (si)〉

Set πt = C(L), where the classifier C is attempting to minimize the
weighted 0/1 loss, or an appropriate surrogate.

In the algorithm above we have replaced idealized expectations with
Monte Carlo estimates and what it naturally an optimization over one-step
policies by a call to an arbitrary supervised-learning algorithm. If we can
perform the supervised learning task at each step well we will achieve good
performance at the RL task at least relative to the baseline distribution.
Action-value approximation via regression. A particular variant of the sam-
ple based PSDP above can be implemented if it is possible to efficiently find
an approximate action-value function Q̃a,πt+1 ...,πT−1 (s), i.e., if at each time-step
we can ensure that ε ≥ Es∼µt(s)[maxa∈A|Q̃a,πt+1 ...,πT−1 (s)−Qa,πt+1 ...,πT−1 (s)|].

(Recall that the policy sequence (a, πt+1 . . . , πT−1) always begins by
taking action a.) If the policy πt is greedy with respect to the estimated
action value Q̃a,πt+1 ...,πT−1 (s), then we can show that this induces a policy that
is within 2Tε 26 of choosing the optimal action according to the distribution 26 Think about where the 2 comes from

here!µ. It is important to note that this error is phrased in terms of an average error
over state-space, as opposed to the worst case errors over the state space
that are more standard in dynamic programming algorithms and drive the
instabilities of those approaches. We can intuitively grasp this by observing
that value iteration style algorithms may amplify any small error in the value
function by pushing more probability mass through where these errors are.
PSDP, however, as it does not use value function backups, cannot make this
same error; the use of the computed policies in the future keeps it honest.
There are numerous efficient regression algorithms that can minimize this, or
approximations to it.

“Convergence” and Partial Observability

Note that even as the time horizon we consider gets very large when we are
in the function approximation setting, Q does not necessarily converge as

approximate dynamic programming 93

k → T even when it would in the full tabular setting. To see why this might
be so, consider an extreme example.

Imagine a hypothetical situation of making a two legged robot walk.
Further, imagine we limit our policy to have only a single feature given to
the function approximation: the time-step t — i.e. no description of state
whatever. As demonstrated in 27, an algorithm like PSDP can actually learn 27 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003

a sequence of open loop torques that make the robot perform an effective,
albeit brittle, walking motion. The value of choosing some action will be very
different even at neighboring time-steps, of course, because we’re encoding
an open-loop strategy here. Generically, this is true: we can get different Q-
functions at neighboring time steps– this is a strong indication, however, of
aliasing of real underlying states.

Algorithm 15: Iterated Policy Search by Dynamic Programming

Algorithm Iterated-PSDP(π)
Start with arbitrary time-varying policy π0

k← 0
while not converged do

for ∀x ∈ X, t ∈ {0, . . . , T − 1} do
πk+1(x, t)← argmin

a∈A

Qπk (x, a, t) Collect samples

{{x(i)t , a(i)t , c(i)t , x(i)t+1}T−1
t=0 }n

i=1 by executing policy πk

Qπk+1 ←Learn({{x(i)t , a(i)t , c(i)t , x(i)t+1}T−1
t=0 }n

i=1, πk)
end
k← k + 1

end
return πk(x), ∀x

Understanding Performance Guarantees

There are multiple possible bounds that can be established for the algorithms
above. Perhaps the most insightful on is a bound on performance with a
multiplicative dependence on average error in the case that we are willing
to compare ourselves against all policies rather than expressing regret with
respect to a limited class. 28 We state the bound as follows: 28 Although the search in PSDP may,

of course, still be conducted over the
limited class.Theorem 2 (MDP Performance Bound). Let π = (π0, . . . , πT−1) be a non-

stationary policy returned by an ε-approximate version of PSDP in which, on each
step, the policy πt found comes within ε of maximizing the value over all policies.
I.e.,

Es∼µt [Vπt ,πt+1 ...,πT−1 (s)] ≥ maxπ′Es∼µt [Vπ′ ,πt+1 ...,πT−1 (s)]− ε . (8.3.1)

Then for all possible policies (including including the optimal one) πref and its
induced distribution over states µπref we have that

Vπ(s0) ≥ Vπref (s0)−∑
t

ε||µ
t
πref

µt ||∞

where the infinity norm refers to the sup of state space.

94 draft: modern adaptive control and reinforcement learning

We sketch a proof here. It is cleanest to apply the Performance Difference
Lemma we developed earlier, but there is a certain value to understanding the
induction that is being applied directly. 29 Proof: It is enough to show that 29 Exercise: Apply the performance

difference lemma for a simplified
version of this proof.

for all t ∈ T − 1, T − 2, . . . , 0,

Es∼µt
πref

[Vπref
t ,...(s)−Vπt ,...(s)] ≤

T−1

∑
τ=t

ε||µ
τ
πref

µτ
||∞

This again follows by induction, the inductive step being the non-trivial
part:

Es∼µt
πref

[Vπref
t ,...(s)−Vπt ,...(s)] (8.3.2)

= Es∼µt
πref

[Vπref
t ,...(s)−Vπref

t ,πt+1 ...(s)] + Es∼µt
πref

[Vπref
t ,πt+1 ...(s)−Vπt ,...(s)]

≤ Es∼µt+1
πref

[Vπref
t+1,...(s)−Vπt+1 ...(s)] + Es∼µt

πref
[maxat Qat ,πt+1 ...(s)−Vπt ,...(s)]

≤ Es∼µt+1
πref

[Vπref
t+1,...(s)−Vπt+1 ...(s)] + Es∼µt

π
[maxat Qat ,πt+1 ...(s)−Vπt ,...(s)]||

µt
πref
µt ||∞

≤ Es∼µt
π
[Vπref

t ,πt+1 ...(s)−Vπt ,...(s)] + ε|| µ
t
πref
µt ||∞

=
T−1

∑
τ=t

ε||µ
τ
πref

µτ
||∞

We are able to “change measures” with the infinity norm (i.e., the largest
value taken at any state) of the ratio of the probability distributions here
because the action-value function optimized over a is always greater than
the value of any other policy. This change of measure follows directly by
multiplying inside the second expectation by µt

µt
, and then bounding the

result.
This bound is powerful in that it lets our error go to zero even if we do

not get a perfect distribution µt as long as we drive our expected error ε to be
low. We can also drop the dependence of µt on t, by simply averaging all the
time slice distributions together

1
T

T−1

∑
t=0

µt

if we are willing to learn our policies to ε/T error.
This bound provides insight by indicating that it is very important that

the “training” distribution be close in a particular way to the distribution
induced by any policy (notably the optimal one) we want to compete against.
In particular, when training each classifier we want to ensure that we put

mass on all places where a good policy spends time so that the ratio
µτ

πref
µτ

is never too large. This makes intuitive sense– we’re better to make sure
our learner has seen examples of possible situations it can get into even
if this means removing some of the mass from more probable instances.
Crudely speaking, in choosing a µ we should err on the side of “smearing”
our best guess of the distribution µπref induced by the optimal policy across
neighboring states.

This style of proof where we use some variation on the performance dif-
ference lemma and a change of distribution is very common to the analysis
of almost all modern approximate policy iteration methods.

approximate dynamic programming 95

Iterated PSDP

PSDP as presented takes as input the set of space-time distributions µt and
generates a policy in polynomial time with non-trivial global performance
guarantees with respect to µt. In many applications, we are able to provide
a useful state-time distribution to the algorithm. For instance, in control and
decision tasks human performance can often provide a baseline distribution
to initialize PSDP. We also often have heuristic policies that can be used to
initialize the algorithm. Finally, domain knowledge often provides useful
indications of where good policies spend time.

In any of these cases, we do not have an accurate estimate of µ for an
optimal policy. A natural approach is to apply PSDP as the inner loop for
a broader algorithm that attempts to simultaneously compute µs and uses
PSDP to compute optimal policies with respect to it. Perhaps the most natu-
ral such algorithm is given below.

Algorithm 16: IteratedPSDP(µ, π, v)

Let πnew = PSDP(µ)
vnew = Value(πnew)
µnew = ComputeInducedµ(πnew) in
if vnew ≤ v then

return π

else
return IteratedPSDP (µnew, πnew, vnew)

Value here is a function that returns the performance of the policy and
ComputeInducedµ returns a new baseline distribution corresponding to a
policy. These can both be implemented a number of ways, perhaps the most
important being by Monte-Carlo sampling.

We start Iterated PSDP with v = 0 and a null policy in addition to our
“best-guess” µ. Iterated PSDP can be seen as a kind of search where the
inner loop is done optimally. For exact PSDP (ε = 0) on an MDP with finite
states and actions, we can prove that performance improves with each loop
of the algorithm and converges in a finite number of iterations.

In the case of approximation, it is less clear what guarantees we can make.
Performance improvement occurs as long as we can learn policies at each
step that have smaller average residual advantages than the policy we are
attempting to improve over.

Summary

PSDP is a useful algorithm template and can serve as a kind of design pat-
tern for approximate DP algorithms and as a tool of theoretical ananlsis.
While there are a number of practical applications of PSDP, even within
robotics30, it is not nearly as commonly used in practice as online variants of 30

the approximate dynamic programming or policy gradient algorithms we’ll
investigate later.

96 draft: modern adaptive control and reinforcement learning

8.4 Related Reading

[1] Ernst, Damien, Pierre Geurts, and Louis Wehenkel, Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research 2005.

[2] Baird, L. (1995). Residual algorithms: Reinforcement learning with func-
tion approximation. In Machine Learning Proceedings 1995 (pp. 30-37).
Morgan Kaufmann.

[3] Boyan, Justin A and Moore, Andrew W, Generalization in Reinforcement
Learning: Safely Approximating the Value Function. NIPS 1994.

[4] Gordon, Geoffrey J, Stable function approximation in dynamic programming.
DTIC Document 1995.

[5] Bagnell, J. A., Kakade, S. M., Schneider, J. G., and Ng, A. Y. (2004). Policy
search by dynamic programming. NIPS, 2004.

[6] J. N. Tsitsiklis and B. Van Roy, An Analysis of Temporal-Difference Learning
with Function Approximation, IEEE Transactions on Automatic Control, Vol.
42, No. 5, 1997.

	Approximate Dynamic Programming
	Challenges when using Fitted Q-Iteration
	Approximate Policy Iteration
	Policy Search by Dynamic Programming
	Related Reading

