
9
Temporal Difference Learning and Q-Learning

In the previous chapter, we covered several sample-based reinforcement
learning algorithms including Fitted Q-Iteration and Approximate Policy
Iteration. These methods are sometimes called batch methods or offline methods
because a batch of samples is collected and a fitted value function (or action-
value function) is found by minimizing the training error for these samples
in one “chunk”. Offline methods like these make efficient use of available
training data, but are computationally expensive and suffer from high mem-
ory consumption as the number of samples increases. They also tend to
suffer quite badly from the distribution mismatch problems we described in
the last chapter.

In this lecture, we present several online techniques that perform an in-
cremental update to a value function estimate after each state transition
(x, a, r, x′). 1 Such online methods can learn a policy with relatively low com- 1 Note that in this chapter we have

switched from cost to reward r, as is
common in the reinforcement learning
literature.

putational and memory cost because the updates are made based on a single
state transition. Such a state transition (x, a, r, x′) may be referred to in the
literature as an experience.

First, we present the Temporal-Difference (TD) method for online policy
evaluation. Next, we present a TD-variant denoted SARSA that extends
online policy evaluation to the action-value function. Finally, we explore
Q-learning as a method for finding the action-value function for the optimal
policy, and hence finding the optimal policy.

In this lecture, we consider the infinite time-horizon setting, and for no-
tational simplicity will usually assume a deterministic policy. Algorithms
generalize to stochastic polices aswell. Recall that the value function for a
fixed policy π satisfies the Bellman equation:

Vπ(x) = E

[
∞

∑
t=0

γt r(xt, π(xt))

]
, where x0 = x. (9.0.1)

The action-value function for a fixed policy π satisfies:

Qπ(x, a) = r(x, a) + E

[
∞

∑
t=1

γt r(xt, π(xt))

]
, where x0 = x. (9.0.2)

The Bellman equation in this case,

Vπ(x) = r(x, π(x)) + γ Ep(x′ |x,π(x))[V
π(x′)]

Qπ(x, a) = r(x, a) + γ Ep(x′ |x,a)[Q
π(x′, π(x′))].

(9.0.3)

98 draft: modern adaptive control and reinforcement learning

The Bellman equations for the optimal value function V∗ and action-value
function Q∗ of the optimal policy π∗ are naturally,

V∗(x) = maxa′∈A

(
r(x, a) + γ Ep(x′ |x,a)[V

∗(x′)]
)

Q∗(x, a) = r(x, a) + γ Ep(x′ |x,a)[maxa′∈A Q∗(x′, a′)].
(9.0.4)

9.1 Temporal-Difference Learning

Temporal-difference (TD) Learning is an online method for estimating the
value function for a fixed policy π. The principle idea behind TD-learning is
that we can learn about the value function from every experience (x, a, r, x′)
as a robot traverses the environment rather than only at the end of a trajec-
tory or trial. 2 2 TD is truly one of the core algorithmic

ideas in RL. It forms the heart of TD-
Gammon, the first algorithm to beat
humans at the difficult stochastic game
of backgammon. That paper is a
masterpiece and set the pattern for
modern self-play RL in games. ’s
outstanding book provides much more
details on Temporal Difference methods
and is highly recommended.

; and R. S. Sutton and A. G. Barto.
Reinforcement Learning: An Introduction.
MIT Press, 1998

Given an estimate of the value function Ṽπ(x) we would like to perform
an update in order to minimize the squared loss,3,

3 Technically, this squared loss is
an estimate of the Bellman error
Edπ (x)[

1
2

(
Vπ(x)− Ṽπ(x)

)2
] where

dπ(x) is the probability of a state x
being visit under policy π.

L =
1
2
(
Vπ(x)− Ṽπ(x)

)2 . (9.1.1)

Since we do not yet know the value function, evaluating this loss requires
evaluating equation (9.0.1). Naïvely, this method would require waiting until
the end of an episode before updating Ṽπ(x). Instead, we estimate Vπ(x)
as y = r + γ Ṽπ(x′) and perform an online update for each experience
(x, π(x), r, x′). Plugging this estimate into the loss function we get 4

4 Notice the trick that has been
played here! We’re treating the value
estimate of the future state as if it
were “correct”– as if it were not
a function of the parameters that
define our value function. This is, of
course, totally incorrect. The Bellman
residual and the Residual Gradient
(RG)isthe“obvious′′itemtooptimizeandit′sgradientandwediscussitatlengthintheendo f thechapter. RG issimplythecorrectderivativeo f thesquaredbellmanerror.TheTDerrorhasthekeyadvantagethaterrorspropagateonlybackwardsintime, astheydointhedynamicprogramswehavediscussedthus f ar.TDcomesthewithsigni f icantadditionalburdenastheresultingalgorithmscanbeshowntonotbethegradiento f anypossibleloss f unctionandthuscanbetrickiertodealwiththansimplegradientbasedalgorithms.

Lapprox(y, Ṽπ) =
1
2
(
y− Ṽπ(x)

)2 . (9.1.2)

The partial derivative of eq. (9.1.2) with respect to Ṽπ is:

∇Ṽπ(x)Lapprox =
(
y− Ṽπ(x)

)
. (9.1.3)

If we assume now a parametric form for Ṽπ(x) in terms of parameters θ, we
can then use the chain rule we can then express ∇θL =

(
y− Ṽπ(x)

)
∇θṼπ(x)

In the case of a tabular representation (one value for each state), our
update rule with a step-size of α would simply be:

Ṽπ(x)← Ṽπ(x) + α
(
r + γṼπ(x′)− Ṽπ(x)

)
← (1− α)Ṽπ(x) + α

(
r + γṼπ(x′)

)
. (9.1.4)

The term
(
r + γṼπ(x′)− Ṽπ(x)

)
is known as the TD error.

By looking at the second line of (9.1.4), one may notice that TD-learning is
also closely related to an exponential moving average.

temporal difference learning and q-learning 99

Algorithm TD

The TD-learning algorithm is shown in Algorithm 17.

Algorithm 17: The TD-learning algorithm.

Initialize Ṽπ

while Ṽπ not converged do
Initialize x according to a particular starting state
while x is not a terminal state do

apply action a← π(x)
receive experience {x, π(x), r, x′}
update Ṽπ(x)

Ṽπ(x)← (1− α)Ṽπ(x) + α
(
r + γṼπ(x′)

)
set x ← x′

return Ṽπ

Grid-World Example

The diagram below shows a grid-based world, where the robot starts in the
upper left (0, 0), and the goal is in the lower right (3, 3). The robot gets a re-
ward of +1 if it reaches the goal, and 0 everywhere else. There is a discount
factor of γ. The policy is for the robot to go right until it reaches the wall,
and then go down.

We start by initializing Ṽπ(x) = 0, ∀x ∈ X.

As the robot moves one cell over from the start state (yellow arrow above),
the reward is 0, and the value of both the current state and the next state is 0,
so the approximate gradient used in the update rule (9.1.4) evaluates to 0 and
no update is performed. As the robot moves into the goal state (red arrow),
the reward is 1, so the approximate gradient evaluates to 1. We then update
the second-to-last cell with (9.1.4) and we get:

Ṽπ((3, 2))← (1− α)Ṽπ((3, 2)) + α
(
1 + γṼπ((3, 3)

)
= (1− α)× 0 + α× (1 + 0) = α.

Another iteration of the algorithm gives us:

100 draft: modern adaptive control and reinforcement learning

Ṽπ((3, 2))← (1− α)Ṽπ((3, 2)) + α
(
1 + γṼπ((3, 3)

)
= (1− α)× α + α× (1 + 0)

= α + α (1− α),

Ṽπ((3, 1))← (1− α)Ṽπ((3, 1)) + α
(
1 + γṼπ((3, 2)

)
= (1− α)× 0 + α× (0 + γ× α)

= α2 γ.

This method is slow, because we have to run the whole policy just to
update the next cell. We will see that SARSA and Q-learning has similar
issues of inefficient usage of experience.

9.2 SARSA

SARSA extends the Temporal-Difference method presented in the previous
section to evaluate policies represented by a action-value functions Qπ(x, a).
Similar to the TD case, we wish to evaluate a policy by performing an online
update to obtain an estimate, Q̃π(x, a), of the true action-value function
Qπ(x, a):

Qπ(x, a) = r(x, a) +
∞

∑
t=1

γtE[r(xt, π(xt))] (9.2.1)

As in TD, we seek to minimize the loss

Lapprox =
1
2
(
y− Q̃π(x, a)

)2 (9.2.2)

where y = r(x, a) + γQ̃π(x′, π(x′)). Following a similar derivation as used
for the TD update, we arrive at the SARSA update rule:

Q̃π(x, a)← (1− α)Q̃π(x, a) + α
[
r(x, a) + γQ̃π(x′, π(x′))

]
. (9.2.3)

temporal difference learning and q-learning 101

Algorithm SARSA

The SARSA algorithm is shown in Algorithm 18.

Algorithm 18: The TD-learning algorithm.

Initialize Q̃π

while Q̃π not converged do
Initialize x according to a particular starting state
while x is not a terminal state do

apply action a← π(x)
receive experience (x, π(x), r, x′, π(x′))
update Q̃π(s)

Q̃π(x, a)← (1− α)Q̃π(x, a) + α
[
r(x, a) + γQ̃π(x′, π(x′))

]
set x ← x′

return Ṽπ

One may notice that TD-learning and SARSA are essentially approximate
policy evaluation algorithms for the current policy. As a result of that they
are examples of on-policy methods that can only use samples from the current
policy to update the value and Q function. Q-learning, by contrast, is an off-
policy method that can use samples from any policies 5 to update the optimal 5 Although clearly it requires exploring

all actions in all states.action-value function.

9.3 Q-Learning

Q-Learning attempts to estimate the optimal action-value function Q∗(x, a)
from an online stream of experiences. Recall that the Bellman Equation for
the optmal action-value function Q∗(x, a) is,

Q∗(x, a) = r(x, a) + γ Ep(x′ |x,a)[maxa′∈A Q∗(x′, a′)].

Suppose we receive experience (x, a, r, x′). If the transition model is deter-
ministic, we could simply update the action-value function as,

Q̃∗(x, a)← r + γmaxa′∈AQ̃∗(x′, a′).

However, just as in SARSA, this performs poorly when the transition or
reward functions are stochastic. Instead, we update Q̃∗ to the weighted sum,

Q̃∗(x, a)← α
[
r + γmaxa′∈AQ̃∗(x′, a′)

]
+ (1− α)Q̃∗(x, a),

where 0 ≤ α ≤ 1 is the learning rate.
One may notice that we do not need the current policy π to update Q̃∗.

Moreover, Q-learning approximates the optimal action-value function, the
Bellman Equation of which does not depend on the specific policy that the
agent is executing. Therefore, Q-learning is an off-policy algorithm that can
use samples from any policies to update Q̃∗. From our experience in the last
chapter, one should however, be naturally suspicious of any algorithm that
claims to be able to this as it must suffer from distributional shift as Value or
Policy Iteration do.

Q-learning is guaranteed to converge Q̃∗ to the optimal action-value func-
tion Q∗ as number of iterations k → ∞ given that the following conditions
hold:

102 draft: modern adaptive control and reinforcement learning

1. Each state-action pair is visited infinite times

2. limk→∞ ∑∞
k=0 αk = ∞

3. limk→∞ ∑∞
k=0 α2

k < ∞,

where αk is the learning rate at iteration k. The latter two conditions mean
that the learning rate α must be annealed over time. Intuitively, this means
that the agent begins by quickly updating Q̃∗, then slows down to refine its
estimate as it receives more experience.

Fitted Q-Learning

Just as the fitted Q-iteration algorithm, we can use a function approximator
to approximate the action-value function.

Suppose that we approximate Q∗ with the function Qθ with parameter θ.
Instead of directly updating our action-value function, we now must update
θ to achieve the desired change in Qθ .

To fit θ, we might choose to minimize a loss function

L =
1
2
(y−Qθ(x, a))2

that penalizes deviation between the approximate action-value function
Qθ(x, a) and the value y = r + γmaxa′∈AQθ(x′, a′) predicted by a Bellman
backup.

First, we must derive the “gradient” of L. 6 By applying the chain rule, 6 Note again this is the same bogus
math where we pretend y is not a
function of the parameters. One might
naturally ask why not just compute
the true gradient? This turns out to be
a somewhat nuanced question. One
intuitive reason is the notion that our
value estimates are likely to better
closer to the end of a trial/closer to
a goal, and that updates should flow
only backwards in time as in dynamic
programming updates. If we computed
the true gradient (the Bellman residual
gradient as it is known , we would
have the estimate of the value function
in the past changing to more closely
match the estimate in the future as well.
A further technical difficulty, discussed
in Baird’s work is that unbiased es-
timates of the true Bellman residual
gradient require multiple samples of
an action outcome from each state vis-
ited. This point of the “derivation” is to
give you intuition why you might come
up with this rule by thinking about
dynamic programming flowing updates
backwards and time and the chain rule
providing updates.

L. C. Baird. Residual algorithms:
Reinforcement learning with func-
tion approximation. In International
Conference on Machine Learning, 1995

we find

∇θL = (y−Qθ(x, a)) [∇θy−∇θQθ(x, a)]

= (y−Qθ(x, a))
[
γ∇θQθ(x′, a∗)−∇θ Qθ(x, a)

]
where a∗ = argmaxa′∈A Qθ(x′, a′) is the optimal action according to
Qθ . Unfortunately, it is not possible to obtain an unbiased estimate of
Qθ(x, a)∇θ Qθ(x′, a∗) using one sample (x, a, r, x′). We can find the optimal
parameter θ by performing gradient descent on L with the update rule,

θ ← θ − α∇θL. (9.3.1)

Q-learning, however, assumes that y is constant and approximates the gradi-
ent as

∇̃θL = − (y−Qθ(x, a))∇θQθ(x, a). (9.3.2)

The complete fitted Q-learning update rule is found by substituting
eq. (9.3.2) into eq. (9.3.1):

θ ← θ + α [y−Qθ(s, a)]∇Qθ(x, a)

← θ + α
[(

r + γQθ(x′, a∗)
)
−Qθ(x, a)

]
∇Qθ(x, a).

Bellman Residual Method

Fitted Q-learning as described above does not implement gradient descent
and, thus, is not guaranteed to converge to a local minimum. The Bellman
residual algorithm avoids the approximation of eq. (9.3.2) by estimating the
true gradient ∇θL.

∇θL = (y−Qθ(x, a))
(
γ∇θ Qθ(x′, a∗)−∇θ Qθ(x, a)

)
.

temporal difference learning and q-learning 103

This estimation is only unbiased if we can generate two or more independent
successor states for taking action a in state s. Generating these samples is
trivial if we are able to simulate the system; i.e. have access to a known or
learned transition model. If we do not know the transition model, then it is
only possible to perform a Bellman residual update if we postpone a backup
until the same state-action pair has been observed two or more times. This
is often impossible when learning on a real system that has a continuous
state-action space.

Exploration Policies

Unlike SARSA, which is an on-policy method, Q-learning is an off-policy
method that can learn from arbitrary (x, a, r, x′) experiences, regardless of
what policy was used to generate them. This means that it is possible to use
an exploration policy training that encourages the agent to visit previously
unexplored regions of the state-action space. Exploration policies guaran-
tee that the agent visits each state an infinite number of times and ensure
convergence when the function is represented by a look-up table.

Two exploration policies that are commonly used with Q-learning are:

1. ε-Greedy. Choose the greedy action a = argmaxa∈A Q̃(x, a) with proba-
bility 1− ε. Otherwise, with probability ε, choose an action uniformly at
random a ∼ uniform(A). Higher values of ε encourage more exploration.
Usually we set ε close to 1 as learning starts, and decay ε → 0 as we go
along.

2. Boltzmann Exploration. Choose action a with probability

π(a|x) = exp
[
βQ̃(x, a)

]
∑a′∈A exp

[
βQ̃(x, a′)

] ,

which is weighted towards selecting actions with higher Q̃-values. Lower
values of β encourage more exploration: the exploration policy with β = 0
is essentially a uniform distribution, as β → ∞ the exploration policy
becomes the greedy policy

π(a|x) = arg max
a′∈A

Q̃(x, a′).

Hence, we usually start with β close to 0 and gradually increase β.

9.4 Experience Replay and Replay Buffers

Q-learning and SARSA are computationally efficient, but make inefficient
use of data. Unlike batch methods, each sample is only used exactly once.
This means that the agent must observe each transition ((x, a, r, x′) for Q-
learning and (x, a, r, x′, a′) for SARSA) many times to propagate the reward
backwards in time.

Experience relay allows Q-learning to re-use experience multiple times by
building a database D of experiences under the currently policy, denoted
the replay buffer. Once enough data has been collected, the agent performs
a fixed number of Q-learning or SARSA updates on the batch. This tech-
nique bridges the gap between offline methods and online methods, and can
potentially combine the advantages the two.

104 draft: modern adaptive control and reinforcement learning

Moreover, because Q-learning is an off-policy algorithm, the experiences
generated from previous trajectories and policies can be re-used to update
the estimate of action-value functions. Therefore, we can use a replay buffer
across Q-learning updates: every time a new experience is generated, it is
added to the replay buffer, and the agent performs Q-learning updates using
random samples from the replay buffer.

A common claim in the literature is that experience relay also helps ad-
dress the problem of correlated samples for fitted Q-learning. In the case of
online updates, the a experience is likely to be highly correlated with the
previous/next experience because they are from the same trajectory. This
makes the function approximator easily overfit to the current part of the state
space, but fail to perform well for the entire state space. However, such cor-
relation is mitigated when we use a batch of samples from possibly different
trajectories to update the function approximator.

9.5 The Philosophy of Temporal Differences*
This section develops a view of Bellman
errors and temporal differences that
is less well-studied in the literature.
It provides some larger philosophical
insight as well as proof techniques, and
perhaps will be the root of important
technical tools in the future. but can
skipped for readers eager to move on to
other control approaches.

While the theory of Markov Decision Processes has become a powerful foun-
dation for reasoning about temporal difference algorithms, we might argue
that there is a still more fundamental intuition that is being captured in TD-
style algorithms. Consider the fully online,Trace access model, and the goal
of predicting a quantity, like long-term reward, over an arbitrary long time
sequence. The fundamental claim at the heart of temporal difference and
bellman residual methods is if predictions of long term value are temporar-
ily consistent, then they must also be good proxies for the actual long term
reward; equivalently, one cannot make consistent predictions (in the sense of
temporal differences) and fail to correctly predict the long term reward.

This notion is quite robust to both noise and imperfect approximation.
In fact, we can show still stronger claims: if a learner’s predictions compete
with the best predictor in a class of learners, then they will also compete with
the best in that same class at the goal of long-term value estimation. That is,
the errors need not even be small– doing as well as possible at consistency
implies doing well at long-term prediction as well. This holds over any
possible noise sequence– even adversarial noise, establishing the centrality
of the notion of Bellman consistency. The central idea is that methods such
as TD and RG should be fundamentally understood as online algorithms as
opposed to standard gradient minimization methods, and that one cannot
simultaneously make consistent predictions in the sense of TD and BE while
doing a poor job in terms of long-run predictions.

This basic model of relating long-term prediction and temporal differ-
ences was established in the work of Schapire and Warmuth [1996]. We
follow the analysis of Sun and Bagnell [2015] to provide simple guarantees
for a wide class of algorithms.

Problem Setting

Consider a sequence of observations (note they need not have the semantics
of state!) that can either be Markovian as we’ve assumed this far in the lec-
ture, or even adversarially chosen. We define the observation at time step
t as xt ∈ Rn, which represents features of the environment at time-step t.
Let’s assume that feature vector x is bounded as ‖x‖2 ≤ X. The correspond-

temporal difference learning and q-learning 105

ing reward at step t is defined as rt ∈ R, where we assume that reward is
always bounded |r| ≤ R ∈ R+. Given a sequence of observations {xt}
and a sequence of rewards {rt}, the long-term reward at t is defined as
yt = ∑∞

k=t γk−trk, where γ ∈ [0, 1) is a discounted factor. Note there is no
expectation being taken here because there is no assumption of a probabilis-
tic environment. Given a function space F , the learner chooses a predictor
f at each time step from F for predicting long-term rewards. In this section,
we assume that any prediction made by a predictor f at a state x is upper
bounded as | f (x)| ≤ P ∈ R+, for any f ∈ F and x.

At time step t = 0, the learner receives x0, initializes a predictor f0 ∈ F
and makes prediction ŷ0 of y0 as f0(x0). Rounds of learning then proceed as
follows: the learner makes a prediction ŷt of yt at step t as ft(xt); the learner
observes a reward rt and the next state xt+1; the learner updates its predictor
to ft+1. This interaction repeats and is terminated after T steps.

We denote the goal of estimating the long-term discounted sequence of
rewards in this setting as the problem of online prediction of long-term reward,
PE .

Definitions

We first define the signed Bellman Error at step t for predictor ft as bt =

ft(xt)− rt − γ ft(xt+1), which measures effectively how self-consistent ft is
in its predictions between time step t and t + 1. We define the corresponding
Bellman Loss at time step t with respect to predictor f as:

`b
t (f) := (f (xt)− rt − γ f (xt+1))

2. (9.5.1)

The Signed Prediction Error of long-term reward at t for ft is defined as
et = ft(xt)− yt and e∗t = f ∗(xt)− yt for f ∗ accordingly. What we actually
care about is the long term Prediction Error (PE) e2

t of a given algorithm in
terms of the best possible PE within our class of hypotheses. 7 7 To lighten notation in the following

sections, all sums over time indices
implicitly run from 0 to T − 1 unless
explicitly noted otherwise.

We can also define an online version of TD Loss at step t as:

`d
t (f) := (f (xt)− rt − γ ft(xt))

2. (9.5.2)

While we won’t consider proving any results in this section, we note that
more sophisticated versions of the arguments for Bellman error can be ap-
plied to the TD-error allowing us to develop a theory and new set of algo-
rithms. The results are more difficult and more limited so we defer those to
the literature 8. 9 8 Wen Sun and J. Andrew (Drew)

Bagnell. Online bellman residual
and temporal difference algorithms
with predictive error guarantees. In
Proceedings of The 25th International Joint
Conference on Artificial Intelligence - IJCAI
2016, April 2016

9 As we noted earlier, though classic TD

algorithm’s update step is extremely
similar to stochastic gradient descent,
there is actually no well-defined objec-
tive function on which TD is performing
stochastic gradient descent. The online
view however provides a clear sequence
of objectives and a clear goal of regret
minimization.

Understanding Bootstrapping in Online Learning Setting

The true loss that a learner should care about is PE: (ft(xt)− yt)
2. However

directly apply no-regret online algorithms on PE is not realistic in practice
since in order to get yt—the discounted sum of future rewards, one has to
wait to get all rewards {ri} (or some truncation of this) for t ≤ i ≤ T. On the
other hand, the algorithms we’ve discuss in this chapter use bootstrapping,
which leverages the current predictor ft to estimate yt as yt ≈ rt + γ ft(xt+1).

This suggests a different perspective on temporal difference learning and
residual gradient learning: In the online learning setting, RG and TD both could be
understood as running Online Gradient Descent on Bellman loss `b

t and TD loss `d
t ,

respectively.

106 draft: modern adaptive control and reinforcement learning

At every time step t, after receiving the Bellman loss `b
t (f), let us consider

what happens if apply online gradient descent on `b
t (f):

ft+1 = ft − µtbt(∇ f ft(xt)− γ∇ f ft(xt+1)), (9.5.3)

where we denote ∇ f f (x) as the functional gradient of the evaluation func-
tional f (x) at function f .10 Now for linear function approximation where 10 We assume the function ∇ f f (x)

belongs to F . This is true for function
classes such as Reproducing Kernel
Hilbert Space (RKHS).

f (x) is represented as wTx, the update step in Eq. 9.5.3 becomes:

wt+1 = wt − µt(wT
t xt − rt − γwT

t xt+1)(xt − γxt+1), (9.5.4)

which reveals the RG algorithm proposed by 11. 12 11

12 Without the use of double samples to
handle stochasticity.

Online Gradient Descent is one of the popular no-regret online learning
algorithms. The above perspective suggests that RG and TD could be under-
stood as applying a special no-regret online algorithm—OGD, to the Bellman
loss and TD loss. This new perspective then naturally motivates the question:
can any other no-regret online algorithms, such as Online Newton step, On-
line Frank Wolf and implicit online learning, be applied to Bellman loss `b

t
and TD∗ loss `d∗

t , and achieve guarantees on the long term loss we actually
care about PE?

More formally, what one might hope is that if we can find a time-sequence
of predictors that achieve the no-regret guarantee on TD loss {`d

t } or Bellman
loss `b

t , then for the sequence of predictors { ft}, the real loss we care about
∑ e2

t could also be upper bounded via some competitive ratio:

lim
T→∞

1
T ∑ e2

t ≤ C
1
T ∑ e∗2t , ∀ f ∗ ∈ F , (9.5.5)

where C ∈ R+ is constant. Schapire and Warmuth [1996] and later Li [2008]
proved variants of this for particular gradient-style algorithms on these loss
functions.

Bounding Long Term Predictive Regret

What we can show is that if an online algorithm running on the sequence
of loss {lt(f)} is no-regret and the generated sequence of predictors { ft}
satisfies a stability condition (we’ll detail below), prediction error can indeed
be upper bounded in the form of Eq. 9.5.5. The analysis is elementary, and
use only a telescoping of the error terms combined with classical Cauchy-
Schwartz bounds. What makes the analysis cool, besides the simplicity of
the toolkit requires, is that it does not place any probabilistic assumption
whatever on the sequence of observations {xt} nor any assumption on the
form of predictors f ∈ F (e.g., f (x) does not have to be linear).

We start by first showing two key lemmas below:

Lemma 3. Let us define dt = ft(xt)− rt − γ ft+1(xt+1). We have:

∑ d2
t ≥ (1− γ)2 ∑ e2

t + (γ2 − γ)(e2
T − e2

0). (9.5.6)

Proof: At the heart of dynamic programming is a tele-scoping of terms.
Schapire and Warmuth [1996] used such to a telescopng of term to implicitly
show that dt = (ft(x)− vt + vt − (r + γ ft+1(xt+1))) = (et − γet+1). Squaring

temporal difference learning and q-learning 107

both sides and summing over from t = 0 to t = T − 1, we get:

∑ d2
t = ∑(et − γet+1)

2

= ∑ e2
t + γ2 ∑ e2

t+1 − 2γ ∑ etet+1

≥∑ e2
t + γ2 ∑ e2

t+1 − γ ∑ e2
t − γ ∑ e2

t+1

= (1− γ)2 ∑ e2
t + (γ2 − γ)(e2

T − e2
0). (9.5.7)

The first inequality is obtained by applying Young’s inequality to 2etet+1 to
get 2etet+1 ≤ e2

t + e2
t+1. 2

In words, this tells us squared TD lossupperboundsthelongtermpredictiveerror(moduloaboundaryterms).

Lemma 4. For any f ∗ ∈ F , the prediction error ∑ e∗2t upper bounds the BE ∑ b∗2t
as follows:

∑ b∗2t ≤ (1 + γ)2 ∑ e∗2t + (γ + γ2)(e∗20 − e∗2T). (9.5.8)

The proof of Lemma 4 is very similar to the one for Lemma. 3 and left as
an exercise.

Now let us define a measure of the change in predictors between the
steps of the online algorithm as εt = ft(xt+1)− ft+1(xt+1), which is closely
related to notions of online stability. We’re going to require this change to be
asymptotically controlled to get good performance. Then bt and dt are then
closely related with each other by εt:

dt = ft(xt)− rt − γ ft+1(xt+1)− γ ft(xt+1) + γ ft(xt+1)

= bt + γεt.

Squaring both sides, we get:

d2
t = b2

t + 2btγεt + γ2ε2 ≤ b2
t + b2

t + γ2ε2
t + γ2ε2

t

= 2b2
t + 2γ2ε2

t , (9.5.9)

where the first inequality is coming from applying Young’s inequality to
2btγεt to get 2btγεt ≤ b2

t + γ2ε2
t . In words, this tells us the signed tem-

poral difference is exactly the signed Bellman error added to how much
the our predictors disagree on xt+1, and thus we can upper bound the
TD errorbythe BE andastabilityterm.Thistightlyconnectstheideao f temporaldi f f erenceandbellmanerrors.

We are now ready to state the following main theorem of this paper:

Theorem 5. Assume a sequence of predictors { ft} is generated by running some
online algorithm on the sequence of loss functions {lt}. For any predictor f ∗ ∈ F ,
the sum of prediction errors ∑ e2

t can be upper bounded as:

(1− γ)2 ∑ e2
t ≤2 ∑(b2

t − b∗2t) + 2γ2 ∑ ε2
t

+ 2(1 + γ)2 ∑ e∗2t + M, (9.5.10)

where

M = 2(γ + γ2)(e∗20 − e∗2T)− (γ2 − γ)(e2
T − e2

0).

By running a no-regret and online stable algorithm on the loss functions {lt(f)},
as T → ∞, the average prediction error is then asymptotically upper bounded by a
constant factor of the best possible prediction error in the function class:

lim
T→∞

:
∑ e2

t
T
≤ 2(1 + γ)2

(1− γ)2
∑ e∗2t

T
. (9.5.11)

108 draft: modern adaptive control and reinforcement learning

Proof: Combining Lemma. 3 and Lemma. 4, we have:

∑ d2
t − 2 ∑ b∗2t

≥ (1− γ)2 ∑ e2
t + (γ2 − γ)(e2

T − e2
0)

− 2(1 + γ)2 ∑ e∗2t

− 2(γ + γ2)(e∗20 − e∗2T). (9.5.12)

Subtracting 2b∗2t on both sides of Eq. 9.5.9, and then summing over from
t = 1 to T − 1, we have:

∑ d2
t −∑ 2b∗2t ≤ 2 ∑(b2

t − b∗2t) + 2γ2 ∑ ε2
t .

Combining the above two inequalities together, we have:

2 ∑(b2
t − b∗2t) + 2γ2 ∑ ε2

t

≥ (1− γ)2 ∑ e2
t + (γ2 − γ)(e2

T − e2
0)

− 2(1 + γ)2 ∑ e∗2t − 2(γ + γ2)(e∗20 − e∗2T). (9.5.13)

Rearrange inequality (9.5.13) and define M = 2(γ + γ2)(e∗20 − e∗2T)− (γ2 −
γ)(e2

T − e2
0), we obtain inequality (9.5.10)

Assume that the f̄ = arg min f∈F ∑ lt(f), then if the online algorithm is
no-regret, we have

1
T ∑ b2

t − b∗2t =
1
T ∑ lt(ft)− lt(f ∗)

≤ 1
T ∑ lt(ft)− lt(f̄)

=
1
T

Regret ≤ 0, T → ∞. (9.5.14)

If, further, our choice of online algorithm satisfies a stability condition, we
can remove a term. For the generated sequence of predictors ft, we say the
algorithm is online stable if:

lim
T→∞

1
T ∑(ft(xt+1)− ft+1(xt+1))

2 = 0. (9.5.15)

Intuitively, this form online stability means that on average the difference
between successive predictors is eventually small on average. Online stability
is a general condition and does not notably limit the scope of the online
learning algorithms. 13 13 For instance, when f is linear, the

definition of stability of online learn-
ing in (see Eq. 3 in) and imply
this kind of stability. In fact, almost all
popular no-regret online learning algo-
rithms satisfy this condition. Moreover,
it turns out that this stability is actually
essential– without this requirement we
can generate counterexamples to the
having any competitive ratio at all.

Ankan Saha, Prateek Jain, and Ambuj
Tewari. The Interplay Between Stability
and Regret in Online Learning. arXiv
preprint arXiv:1211.6158, pages 1–19,
2012. URL http://arxiv.org/abs/

1211.6158; Ankan Saha, Prateek Jain,
and Ambuj Tewari. The Interplay
Between Stability and Regret in Online
Learning. arXiv preprint arXiv:1211.6158,
pages 1–19, 2012. URL http://arxiv.

org/abs/1211.6158; and Stephane
Ross and J. Andrew Bagnell. Stability
Conditions for Online Learnability.
arXiv:1108.3154, 2011. URL http:

//arxiv.org/abs/1108.3154

Thus, assuming stability, we have: 1
T ∑ ε2

t = 0 when T → ∞.
Also, since we assume | f (x)| ≤ P and |r| ≤ R, we can see M must be

upper bounded by some constant. Hence, we must have M
T = 0, as T → ∞.

Under the conditions that the online algorithm is no-regret and satisfies
online stability, we get Eq. 9.5.11 by dividing both sides of Eq. 9.5.10 by T
and taking T to infinity. 2

Note that in the Thm. 5, Eq. 9.5.10 holds for any f ∗ ∈ F , including the f ∗

that minimizes the prediction error.

Conclusion

It is interesting that we can derive and prove bounds for a wide class of
algorithms without making the markov assumption. A natural question is

http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1108.3154
http://arxiv.org/abs/1108.3154

temporal difference learning and q-learning 109

whether we can use these approaches to design algorithms that are more
robust to distributional shift, or to understand the superior performance of
online methods like TD as compared with offline methods like fitted value-
iteration.

	Temporal Difference Learning and Q-Learning
	Temporal-Difference Learning
	SARSA
	Q-Learning
	Experience Replay and Replay Buffers
	The Philosophy of Temporal Differences*

