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JAB: My first book was dedicated to my

teachers; this one I dedicate to the students

from whom I’ve learned still more.





Prelude

This book is an edited collection of lecture notes from classes given
by Drew Bagnell at Carnegie Mellon University in the class Adaptive
Control and Reinforcement Learning (2010,11,14), from Byron Boots
at Georgia Tech (2019) and from Sanjiban Choudhury at Cornell
(2022). We thank Chris Atkeson for co-teaching the first instance
of this class and shaping how we think about the problems herein.
We gratefully acknowledge the many students who took (and put
up with!) incomplete notes on the topics covered. We thank Arun
Venkatraman who provided the step-by-step derivation of iLQR,
and Anqi Li, who provided key editing and improvements to this
document.

This book– and the classes it was built from– was designed to pro-
vide a set of practical tools to build decision making procedures for
machines interacting with the world. Our applications vary from
video games and web-search to robot manipulation and self-driving
vehicles. The field is vast and so our take is necessarily just one nar-
row viewpoint. We explicitly make no attempt to be rigorous, but
rather focus on intuition and informal mathematical argument to
build that intuition, and on techniques we’ve seen work multiple
times on hard decision making problems. We try to outline the tech-
niques and ways of thinking we’d be most likely to pull out in prac-
tice. Throughout, we attempt to point to rigorous derivations and the
original literature on the topics.

Naturally this work is presented in a somewhat personal context,
noting the practical and theoretical differences that arose in imple-
menting real systems. These notes are by no means exhaustive nor
is it meant to serve as a summary of the outstanding work in the
field; the interested reader will hopefully follow the related reading
and bibliography to dive deeper. Instead, it is meant to summarize
lessons we’ve learned, particularly in close collaboration with others
in robotics and learning, on problems of making decisions.

These notes were designed to build on essential techniques in
probability (conditional probability, conditional independence, Gaus-
sians, integration techniques, Bayesian methods and inference, fil-
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tering and time-series models), linear algebra (both computational
and basic linear analysis), optimization (gradients, Hessians, met-
rics, Krylov sub-spaces), and machine learning (generalization, op-
timization, no-regret/online learning, back-propagation, and kernel
methods).

A companion set of lectures notes, covering elements of those tech-
niques particularly in learning and probability, Statistical Techniques in
Robotics is under development to fill the gap.



1
Markov Decision Problems

1.1 Markov Decision Processes

Overview

We require a formal model of decision making to be able to syn-
thesize and analyze algorithms. In general, making an “optimal”
decision requires reasoning about the entire history previous obser-
vations, even with perfect knowledge of how an environment works.

A powerful notion that comes to us from the physical sciences
is the idea of state — a sufficient statistic to predict the future that
renders it independent of the past. In classical mechanics, the phase
space of positions and momenta forms that state: together with the
knowledge of an isolated rigid body (it’s inertia) and any torques ap-
plied, we can predict the future pose of the object without knowledge
of the past.

A Markov Decision Process (MDP) is a mathematical framework
for modeling decision making under uncertainty that attempts to
generalize this notion of a state that is sufficient to insulate the entire
future from the past. MDPs consist of a set of states, a set of actions,
a deterministic or stochastic transition model, and a reward or cost
function, defined below. Note that MDPs do not include observations
or an explicit observation model as the environment is assumed to be
fully observable at all times: in other words, an agent can observe the
state of the world.

The acronym MDP is overloaded to refer to a Markov Decision
Problem where the goal is to find an optimal policy that describes how
to act in every state of a given a Markov Decision Process. A Markov
Decision Problem includes a notion of what it means for a policy to
be optimal, including a discount factor that can be used to calculate
the present value of future rewards and an optimization criterion and
a horizon (possibly infinite) time that specifies when the problem
ends. Strategies for minimizing cost or maximizing reward vary, and
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should be time-dependent in finite horizon systems.
The key property – indeed the eponymous property – of an MDP

is that it is Markov. That is, the probability of observing future states
given the past depends (and holding fixed a sequence of actions)
only the most recent state and is conditionally independent of the full
history. We make that more precise after we introduce notation below
to cover key elements of an MDP.

Definitions

1. State Space: x ∈ X or s ∈ S. In robotics, examples of state
might include the pose of a rover or the configuration of a robot
arm. There is typically an initial state, denoted x0 and possibly a
terminal state that ends the problem if entered. State is meant to
evoke the notion of a full description (like position and velocity in
classical mechanics) of the system under consideration that makes
the previous trajectory irrelevant to the prediction of the future.

2. Action: a ∈ A or u ∈ U. Examples of actions include moving to
a discrete neighboring state or torques applied to a joint or wheel.
This space is often alternately called the control space.

3. Transition Model: For stochastic systems, we represent the tran-
sition model as the probability of an action a, taken from state x,
leading to state x′, denoted x′ ∼ T (x, a). Here T can be a prob-
ability mass function in case of systems with discrete set of states
or a probability density function if the system has a continuous
set of states. In deterministic systems, we often explicitly denote
the transition model as a deterministic function, i.e., x′ = T (x, a).
Note, however, that it is also possible to realize deterministic sys-
tems with a stochastic model with the Dirac delta distribution. In
an MDP this distribution is well defined, and independent of the
past: p(x′|x, a, history of all previous x’s and a’s) = T (x, a). This is of-
ten referred to as the plant (particularly in control literature) or the
environment. We will consider environments that are best modeled
by time-varying plans x′ = T (x, a, t) as well in these notes.

4. Reward or Cost Function: The reward r(x, a) or cost c(x, a) of
taking an action a at a state x. A reward or a cost function can be
used interchangeably: we can get the same solution if we define
the cost function as the negative of a given reward function and
switch the max (for framing as rewards) to min (for framing as
costs) during optimization. 1 In some situations, the cost or re- 1 Note, however, that sometimes the use

of the phrase cost is meant to imply that
the cost is strictly positive.

ward can be a function of only the state s, i.e., r(x) or c(x), or a
function of the next state x′ after executing action a, r(x, a, x′) or
c(x, a, x′), or some even more complicated combinations like being
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also a function of time, i.e., r(x, a, x′, t), or can itself be a random
variable ( i.e., with distribution p(r | x, a, x′, t)). The last form is
the most general form that obeys the Markov property and enables
efficient computation.

5. Horizon: T ∈ N. The problem is considered over after T steps.
This often encodes the number of steps that we care/are able to
execute the policy. See Objective Function below. 2 2 If T = 1, optimal control can be

reduced to a greedy search, that is
choosing the action with the highest
reward. If 0 < T < ∞, then one must
reason T steps ahead to determine
the optimal policy starting from the
initial state. Often there is no discount
factor and the optimal policy may vary
wildly as a function of time. The case
where T = ∞ is typically more likely to
converge, as a discount factor γ is used
to dampen the effects of oscillation or
any time-dependent properties.

6. Discount Factor: 0 ≤ γ ≤ 1. This notion determines the current
value of future costs or rewards. The intuition is that rewards are
more valuable if they happen soon, so if a reward is received n
steps in the future, it’s only worth γn as much as in the present.

7. Policy:π ∈ Π : π(x, t) = a. A function that maps states (and an
optional time step) into actions. This specifies how to act in any
state. 3

3 In the simplest case, a policy is simply
a map from the current state to an
action, but policies can be much more
general and include information about
the transition model or information
about the history of previous states
(π : {x0, ..., xt} × T → A). We can
show that if a decision problem is
Markovian, an optimal policy need only
be a function of state and time, rather
than further history.

8. Value Function: Vπ(x, t). A function used to measure the ex-
pected discounted sum of rewards from following a specific policy
π from state x. The optimal value function, denoted V∗(x, t), is the
value function of the optimal policy π∗, i.e. the policy that yields
the highest value for each state x.

9. Objective Function: An optimization criteria for a Markov Deci-
sion problem.4 Expected cumulative reward is a common objective

4 Note that optimizing such an objective
function does not require the Markov
property – that property helps us find
policies efficiently.

function in reinforcement learning:

E

[
T−1

∑
t=0

γt r(xt, at)

]

Other examples include expected infinite discounted reward:

E

[
∞

∑
t=0

γt r(xt, at)

]

and immediate reward:

E [r(x0)]

The goal is to choose a policy that will minimize (if we’re using
cost functions) or maximize (if we’re using reward functions) our
objective function. Remember that the policy function just describes
the action we take at each time step, so we’re effectively finding the
best (on average) sequence of actions to complete our task.

To disambiguate some of the notation, from this point on states
will be referred to as x, transition models as T , and horizon as T.
Because we are pessimistic academics, we will deal in costs c, not
rewards.
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Example

Consider the simplified game of Tetris, where randomly falling pieces
must be placed on the game board. Each horizontal line completed
is cleared from the board and scores points for the player. The game
terminates when the board fills up. The game of Tetris can be mod-
eled as a Markov Decision Process.

Figure 1.1.1: Example states
and transitions for a Tetris
scenario with figure from [3].

• States: Board configuration (each of k cells can be filled/not filled),
current piece (there are 7 pieces total). In this implementation,
there are therefore approximately 2k × 7 states. Note: not all con-
figurations are valid, for example, there cannot be a piece floating
in the air. This resulting in a smaller number of total valid states.

• Actions: A policy can select any of the columns and from up to 4
possible orientations for a total of about 40 actions (some orienta-
tion and column combinations are not valid for every piece).

• Transition Matrix: A deterministic update of the board plus the
selection of a random piece for the next time-step.

• Cost Function: There are several options to choose from, includ-
ing: reward = +1 for each line removed, 0 otherwise; # of free
rows at the top; +1 for not losing that round; etc.

Deterministic and Non-Deterministic MDP Algorithms

For Deterministic MDPs the transition model is deterministic or,
equivalently, we know with certainty what the next state x′ will
be given the current state x and the action a. Solving deterministic
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MDPs is often traditionally posed as a search problem. There are
many approaches to solving deterministic MDPs using search, many
of which are much more efficient than generic MDP approaches.
Here are three flavors of approach that one might try:

1. The Greedy Approach: choose the action at the current time that
minimizes the immediate cost.

2. Naive Exhaustive Search: explore every possible action for every
possible state and choose the series of actions that minimizes the
total cost.

3. Pruning: Search possible actions, but remember only the cheapest
series of actions, ignoring the previously discovered paths with
higher cost.

A naive exhaustive search is often computationally ineffective as its
complexity is O(exp(T)).

An exhaustive search can produce the optimal policy at the ex-
pensive of high computational (and sample complexity) cost. While
the greedy approach is often cheap to compute, it may sometimes
produce policies that are not remotely good. The pruning approach
balances the computational cost and the quality of the resulting poli-
cies. Often it can produce a reasonably good policy in a much shorter
time compared to the exhaustive search algorithms. However, if we
care to find the optimal policy, then we need to consider all policies.

Non-deterministic problems, where the next system state is not
known with certainty, naturally suggest considering the expectation
of future rewards for any given action. One strategy, called Value It-
eration,5 discussed in the later section, calculates the expected sum of 5 The Value Iteration algorithm is also

applicable to deterministic MDPs.
In fact, we will see how to use Value
Iteration to solve deterministic MDPs in
the next section.

discounted rewards for each state under the optimal policy (the value
of that state, denoted V∗, also known as the optimal value function)
without explicitly computing the optimal policy. An optimal policy
can then just act by greedily selecting the action with the highest
value. Some alternatives will be covered later in the course, such as
Policy Iteration and Q-Learning. Policy iteration evaluates a given pol-
icy then improves upon the policy and repeats the process. We latter
consider methods which do not require an apriori known transition
model, and instead attempt to use samples of state-action pairs to
compute an optimal action from any state.

1.2 Solving MDPs

Scenario

Let’s consider the case where a robot is traversing a known maze-like
environment from a start location to a goal location. The environ-
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ment is discretized into a 2D grid. Actions are movements in the
cardinal directions. The cost is +1 (a unit of “suffering”) for being in
every state except for the goal state where the cost is 0. The goal is a
terminal “absorbing” state, so once our robot achieves the goal state
it cannot leave – the robot has achieved nirvana and the suffering is
over. Our task is to choose a sequence of actions that take the robot
from the start state to the goal state while minimizing the expected
total cost. In other words, we want to minimize

E

[
T−1

∑
t=0

c(xt, at)

]

We’ll first look at a deterministic problem where the robot will move
to the adjacent cell in the direction of the action if the cell is free:
there may be obstacles or walls in the grid, in which case the robot
is unable to transition into those states. In this simple deterministic
problem, with the cost for each state except for the goal being 1,
the optimal value at each state is simply the minimum number of
states traversed to get from that state to the goal. The optimal policy
returned at each cell is then the direction the robot should travel to
minimize the number of steps needed to reach the goal.

Figure 1.2.1: Discrete World,
Start (S), Goal (G). Obstacles are
denoted by the black squares

Dynamic Programming Formulation for Solving Deterministic MDPs

Time T− 1:
We can write this in a straightforward recursive formulation of this

problem, we start at the last timestep, t = T − 1. Here, the optimal
policy is just choosing the action with the minimal cost and the value
function at each state is the minimum cost of all actions from a given
location.

π∗(x, T − 1) = argmin
a

c(x, a)

V∗(x, T − 1) = min
a

c(x, a)

Time T− 2:
Now the values at the last timestep are the same everywhere ex-

cept at the goal. Next, consider the next-to-last step t = T − 2. Sup-
pose that we are at state x and we take action a, the total cost would
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Figure 1.2.2: Optimal Value
Function for each state at time
T − 1

be the value of the next state x′ = T (x, a) at the last timestep T − 1
plus the immediate cost of taking action a in our current state x.
Therefore, we should simply choose an action a that minimizes the
sum these two terms. The optimal value of each state is then the
minimum of the cost of the action a at current state x and plus the
optimal value of the next state x′ at the last timestep T − 1.

π∗(x, T − 2) = argmin
a

[
c(x, a) + V∗(x′, T − 1)

]
V∗(x, T − 2) = min

a

[
c(x, a) + V∗(x′, T − 1)

]

Figure 1.2.3: Optimal Value
Function for each state at time
T − 2

Time T− 3 and below
We can define a general recursion to calculate the optimal value

and optimal policy functions. For any given time t ≤ T − 2, we have:

π∗(x, t) = argmin
a

[c(x, a) + V∗(T (x, a), t + 1)]

V∗(x, t) = min
a

[c(x, a) + V∗(T (x, a), t + 1)]

Figure 1.2.4: Final value func-
tion after T steps of Value
Iteration

We can also write recursive algorithms that produce the optimal
value and the optimal policy for any state, at any time t, considering
a T-length time horizon. Algorithm 1 below describes the recursive
method that computes the best value function (cost-to-go) for a given



16 draft: modern adaptive control and reinforcement learning

Figure 1.2.5: Action at each
location using the final policy.

state x starting at time t and stopping at time T − 1.

Algorithm 1: Recursive algorithm for computing the optimal
value function

Algorithm OptimalValue(x, t, T)
if t = T − 1 then

return min
a

c(x, a)

end
else

return min
a

c(x, a) + OptimalValue(T (x, a), t + 1, T)

end

How do we compute the best policy? One important concept we
can observe from the algorithms above is that if we use the optimal
value function we never need to explicitly compute the optimal pol-
icy. Policy and value are not the same, but if the optimal value func-
tion is given, the optimal policy can be easily recovered, as shown
below:

π∗(x, t) = argmin
a

[c(x, a) + V∗(T (x, a), t + 1)] .

But what if we want to get the optimal policy while computing the
optimal value? Let’s first define an auxiliary algorithm that returns
the value function with time horizon T for a given policy π, starting
at state x. This is called policy evaluation and is described in Algo-
rithm 2.

Algorithm 2: Policy evaluation: a recursive algorithm that com-
putes the value function for a given policy

Algorithm Value(x, π, t, T)
if t = T − 1 then

return c(x, π(x, t))
end
else

return c(x, π(x, t)) + Value(T (x, π(x, t)), π, t + 1, T)
end

The above can, of course, be implemented as an in-place dynamic
program by starting from the last time-step as in Algorithm 3 as
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describe in the equations above for the robot problem.
We can also extract via a dynamic program (backwards induction)

that proceeds from the last time step Algorithm 2 to compute the
optimal policy π∗(x, t) for all states and time steps:

Algorithm 3: Algorithm for computing the optimal policy

Algorithm OptimalPolicy(x, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

π∗(x, t) = argmin
a

c(x, a)

end
else

π∗(x, t) =
argmin

a
c(x, a)+Value(T (x, a), π∗, t + 1, T)

end
end

end

Note that the complexity of computing the optimal policy via the
dynamic program above is O(|X||A|T2). However, because we are
repeatedly calculating many of these function calls, we can memoize
previously computed value functions (i.e. from future time steps)
resulting in an algorithm with complexity O(|X||A|T). Below, we’ll
explictly use backwards induction to create Value Iteration, the “in-
dustry standard” efficient means to compute the optimal value func-
tion rather than rely on ad-hoc memoization.

It is worth noting that the value function is a function of time. You
might see why by considering, for instance, a hockey game, in which
a team’s actions may vary widely depending on the time remaining.
If a team is losing and there are seconds left, they may choose to
pull their goalie off the ice and have an extra scoring player. At the
start of the game, even if losing, pulling the goalie is generally a very
unwise decision.

Backwards Induction Formulation for Solving General MDPs

Consider now MDPs that are not deterministic– that is, problems
with uncertainty in the transition model. Here we will consider opti-
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mizing the expectation over the optimal value function:

π∗(x, t) = argmin
a

[
c(x, a) + E

[
V∗(x′, t + 1)

]]
= argmin

a

[
c(x, a) + ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
,

V∗(x, t) = min
a

[
c(x, a) + E

[
V∗(x′, t + 1)

]]
= min

a

[
c(x, a) + ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
.

Applying backwards induction (dynamic programming) instead of
a recursive formulation, we get what is known as Value Iteration:

Algorithm 4: Dynamic Programming Value Iteration for comput-
ing the optimal value function.

Algorithm OptimalValue(x, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + ∑
x′∈X

p(x′|x, a)V(x, t + 1)

end
end

end

This approach now has complexity O(|X|2|A|T). However, since
we often don’t have to sum over all x ∈ X as the probability of
transitioning to those states may be 0, this typically reduces to
O(k|X||A|T), where k is the average number of neighbouring states.
In a deterministic problem, of course k = 1. If our environment is
continuous, the sums above become integrals as we are integrating
over the state space.

Infinite Horizon Problems

Recall that when we have a finite horizon, both the optimal value
function and the optimal policy are functions of time. However, as
T approaches infinity, we expect that the optimal value function
and the optimal policy no longer have such dependence on time.
Consider, for example, the maze problem above: we would expect
the value function to stabilize as the horizon T gets large. Similarly,
it would seem surprising to alter our policy at different time steps
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when there is no time limit (imagine a game that lasts forever). Exercise: Construct examples that lead
to value function divergence. Relate
to the classical convergence criteria
for series in sequences in college-level
calculus.

In some cases, the value function (optimal, or for a given policy)
will not converge in the infinite horizon case. Typically, failure of
convergence for the infinite horizon problem is caused by divergence
(for example, when the goal is unreachable), but oscillation of the
value function can also prevent the value function from converging.
A simple example of the oscillation problem is shown below:

Figure 1.2.6: Value Function
Oscillation

If the value function does converge, we are assured a stationary
feedback policy that is optimal. 6 6 Exercise: Why? Make the argument.

Rewards and Discount Factors

Thus far, we have only talked about cost functions in our examples.
Instead, imagine using a reward function, where the robot gets zero
points for each move, unless it moves into the goal, whereupon it
receives 100 points. You can see that there is very little urgency for
the robot to move towards the goal, as it can spend as many steps as
it wants wandering the state space before reaching the goal while still
receiving the same 100 points.

In order to avoid situations like this, we can apply the discount fac-
tor mentioned above. Since discount factors value obtaining rewards
sooner rather than later, they incent the robot to move to the goal as
quickly as possible.

More morbidly, discount factors can alternatively be thought of
as a way of contending with the possibility of death. 7 Under this 7 Understanding a discount factor

as imposing an effective horizon of
O( 1

1−γ ) and understanding it as being
the result of a transition to a terminal
state are often powerful ways to rea-
son intuitively about algorithms and
analysis in optimal decision making.

interpretation, at each time step, the robot lives with probability γ,
and dies with probability (1− γ) (goes to an absorbing state that has
0 reward or value). The optimal value function then becomes:

V∗(x, t) = min
a

[
c(x, a) + ∑

x′

[
γ
[
p(x′|a, x)V∗(x′, t + 1)

]
+ (1− γ)× 0

]]

= min
a

[
c(x, a) + γ ∑

x′
p(x′|a, x)V∗(x′, t + 1)

]
The fixed point version of the above equation (i.e., what we would
expect to hold as the finite horizon value function to converge as
T → ∞) is called the Bellman equation.

V∗(x) = min
a

[
c(x, a) + γ ∑

x′
p(x′|a, x)V∗(x′)

]
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We will explore this equation in more detail below.

Convergence and Optimal Solutions

If γ < 1, we can guarantee that the sum of rewards achieved by the
agent is finite with probability 1 (assuming the reward is as well for
each state and time) and that the optimal value function will con-
verge. For many special cases, the value function will also converge
for γ = 1, but this is not generally true for the reasons we discussed
above.

It is important to bear in mind that once the value converges, it–
and the optimal policy– becomes invariant with relation to the time.8 8 Exercise: Convince yourself this must

be true.

V∗(x, t) t→∞−−→ V∗(x) = min
a

[
c(x, a) + γ ∑

x′
p(x′|x, a)V∗(x′)

]
And the same happens for the optimal policy:

π∗(x, t) t→∞−−→ π∗(x) = argmin
a

[
c(x, a) + γ ∑

x′
p(x′|x, a)V∗(x′)

]
There are two iterative approaches for finding this convergence value.

Approach 1 In this approach, we define a small threshold ε (this
could be interpreted as a as a confidence level) and we will run the
algorithm for a time horizon that is sufficiently large so that the error
in that value will be of magnitude O(ε). Choosing T such that γT =

O(ε), i.e. T = O(log( 1
ε )), ensures that our error is O(ε). We then

simply run Algorithm 4 for T time-steps, use execute the resulting
(time-varying!) policy. 9 9 It’s unclear what to do in this ap-

proach when the policy executes T or
more steps. Cycling the policy again
could be a reasonable procedure but
is ad-hoc. Of course, theoretically it
doesn’t matter because times larger
than T, by construction, are exponen-
tially damped in their significance.

Algorithm 5: Dynamic Program for creating an optimal value
function on the infinite horizon by finite horizon approximation

Algorithm OptimalValue(x, T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = min
a

c(x, a)

end
else

V(x, t) = min
a

c(x, a) + γ ∑
x′∈X

p(x′|x, a)V(x, t + 1)

end
end

end
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Approach 2 Alternately one can use an iterative, in-place method,
based on the Bellman equation, where the result obtained in one step
is plugged back into the equation until it converges.

Algorithm 6: Iterative approximation algorithm

for x ∈ X do
V(x) = min

a
c(x, a)

while does not converge do
for x ∈ X do

Vnew(x) = min
a

c(x, a) + γ ∑
x′∈X

p(x′|x, a)Vold(x′)

Vold(x)← Vnew(x), ∀x
return Vnew(x), ∀x

Both algorithms will return the optimal value function for all
states as the number of iterations tends to infinity. As mentioned
earlier, once the value function is known, it is possible to obtain the
policy. Thus, these algorithms also allow us to obtain the optimal
policy for every state.

Approach 1 can be demonstrated to have theoretically stronger
performance bounds if we execute the time-varying policy that re-
sults rather than keeping only the value and policy computed at
t = 0, perhaps intuitively as it is actually the optimal solution for the
finite horizon problem.10 Approach 2 is not the optimal solution for 10

any specific problem but rather is an approximate iterative method.
Nevertheless, Approach 1 can be costly: it requires a considerable
amount of extra memory, since it keeps track of all future values for
each given time step. Approach 2 initializes the value function V and
iteratively finds better approximations of that value by plugging its
current value into the solution equation. Compared with the first
approach, this approach has a slower convergence rate as a function
of the number of iterations in the worst case, but requires a smaller
amount of memory. One can also consider simple variants (covered
in [Puterman, 1994]) that maintain a single value functions and up-
date data in place.11 11 Similar to a Gauss-Seidel method for

solving linear systems.

1.3 Related Reading

[1] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic
Robotics. Cambridge, MA: MIT, 2005. Ch 14, pp 499-502 for most
relevant material.

[2] Andrew Moore’s slides: http://www.autonlab.org/tutorials/
mdp.html

http://www.autonlab.org/tutorials/mdp.html
http://www.autonlab.org/tutorials/mdp.html
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[3] Boumaza, A. How to design good Tetris players, Tech Report,
University of Lorraine, LORIA, 2014.

[4] Puterman, M. Markov Decision Processes: Discrete Stochastic
Dynamic Programming, 2005.



2
LQR: The Analytic MDP

2.1 The Linear Quadratic Regulator

In the previous chapter we defined MDPs and investigated how to
compute the value function and optimal policy at any state with
Value Iteration. While the examples thus far have involved discrete
state and action spaces, important applications of the basic algo-
rithms and theory of MDPs include problems where both states and
actions are continuous. Perhaps the simplest such problem is the
Linear Quadratic Regulator (LQR) problem.

LQR techniques are one of the most effective and widely used
methods in robotics and control systems design. The basic problem
is to identify a mapping from states to controls that minimizes the
quadratic cost of a linear (possibly time varying) system. A quadratic
cost has the form,

c(x, u) = x> Q x + u> R u, (2.1.1)

where x ∈ Rn is the state of the system, and u ∈ Rk is the control.1 1 Precisely the same as action a in the
previous section. Here we choose to
use u to denote actions in order to be
consistent with the broad literature on
control.

In the cost function, Q should be symmetric positive semi-definite
(Q = Q>, Q � 0).2 It does not have to be strictly positive definite in

2 Why? Note what would fail if Q did
not have these properties? Is symmetry
a requirement?

general.3 For example, in the cart-pole balancing problem, we only

3 For instance because sometimes we do
not require every component of the state
to reach 0 and don’t care about these
components

need the pendulum to stay upright and we do not care much about
where the cart is. However, to avoid infinite control effort, R should
be strictly positive definite (R = R>, R � 0).

Exercise

There is disagreement in the literature as to what positive definite
applied to a matrix Q means: does it imply symmetry, or just that
x> Q x > 0 for all non-zero x? Let’s see the root of this confusion:
Why can we consider Q = Q> without any loss of generality in
the LQR problem? Specifically, make the opposite assumption, and
then consider a symmetric Q that would lead to precisely the cost
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function. In a sense then, we can simply assume positive definiteness
implies symmetry as this is simpler to countenance and will lead to
equivalent results.

Continuous Control of a Discrete-Time System

An example of a continuous time-invariant system with quadratic
cost is the problem of balancing a simple inverted pendulum. The
pendulum is illustrated in Figure 2.1.1. The simple pendulum con-
sists of a bob, modeled as a point mass, and attached to a mass-less
rigid rod. Let the mass of the bob be m, the length of the rod be l,
and gravity be g. The angle between the pendulum and the y-axis θ

is controlled by the torque τ exerted at the origin. The dynamics of
this system is given by

ml2θ̈ = mgl sin θ + τ

⇒ θ̈ =
g
l

sin θ +
1

ml2 τ

≈ g
l

θ +
1

ml2 τ (2.1.2)

To find the control policy of the system, we first linearize it about

Figure 2.1.1: An inverted pen-
dulum.

the up-right configuration. Let α = g/l, and assume ml2 = 1. The
state space equations become[

θ

θ̇

]
t+1

=

[
1 + 1

2 ∆t2 · α ∆t
c · ∆t 1

] [
θ

θ̇

]
t

+

[
1
2 ∆t2

∆t

]
τ (2.1.3)

The optimal control policy can be found by formulating an MDP. For
the linearized simple pendulum,

• state: xt =

[
θ

θ̇

]
t

,

• action: ut = τ,

• cost: c(x, u) = x>Qx + u>Ru,
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• dynamics: xt+1 = Axt + But,

where A =

[
1 + 1

2 ∆t2 · c ∆t
c · ∆t 1

]
and B =

[
1
2 ∆t2

∆t

]
.

We already know how to solve this problem: Value Iteration! Let’s
look at this more closely.

2.2 Value Iteration for Linear Quadratic MDPs

Let the value function of the MDP for a finite-horizon problem with
horizon T be be Jπ(xt, t), i.e.

Jπ(xt, t) =
T−1

∑
t′=t

c(xt′ , π(xt′ , t′)). (2.2.1)

Recall the Bellman Equation for the finite horizon problem:

J∗(x, t) = min
ut

[c(xt, ut) + J∗(xt+1, t + 1)]

= min
ut

[
(xt
>Qxt + ut

>Rut) + J∗(xt+1, t + 1)
] (2.2.2)

and
J∗(x, T − 1) = min

uT−1
[c(xT−1, uT−1)] (2.2.3)

Let’s consider the recursive formulation for solving this problem.
Time T− 1:

At the last time step t = T − 1, the solution to Equation 2.2.2 is
uT−1 = 0. This is due to the fact that we are not concerned with the
next step since we already reach the time limit. Hence, any action
will increase the cost: minimizing (2.2.3) is essentially minimizing
u>T−1RuT−1. By definition, R is a positive definite matrix, and there-
fore setting uT−1 = 0 can result in minimum cost at t = T − 1.

Now let’s calculate the optimal value function J∗(xT−1, T − 1).
Since uT−1

>RuT−1 = 0, by (2.2.3),

J∗(xT−1, T − 1) = xT−1
>QxT−1

.
= xT−1

>VT−1xT−1, (2.2.4)

where VT−1 is the value matrix.4 4 A common alternate notion is to use Pt
instead of Vt to denote the value matrix.In summary, at the last time step, we have a zero control and a

value that is quadratic in the state.
Time T− 2:

The optimal value function at t = T − 2 is,

J∗(xT−2, T − 2) = min
uT−2

c(xT−2, uT−2) + J∗(xT−1, T − 1) (2.2.5)

= min
uT−2

(
xT−2

>QxT−2 + uT−2
>RuT−2 + xT−1

>VT−1xT−1

)
.

(2.2.6)



26 draft: modern adaptive control and reinforcement learning

For the sake of notational simplicity, let x = xT−2 and u = uT−2.
From the dynamics of the system, xT−1 = Ax + Bu.

J∗(x, T − 2) = min
u

{
x>Qx + u>Ru + (Ax + Bu)>VT−1(Ax + Bu)

}
(2.2.7)

Taking the partial derivative of the function to be minimized with
respect to u and setting it to 0 yields

2Ru + 2B>VT−1 Ax + 2B>VT−1Bu = 0

(R + B>VT−1B)u = −B>VT−1 Ax

u = −(R + B>VT−1B)−1B>VT−1 Ax (2.2.8)

The solution to u always exists because the inverse of R + B>VT−1B
exists since R is positive definite and B>VT−1B is at least positive
semi-definite. Let KT−2 = −(R + B>VT−1B)−1B>VT−1 A,

uT−2 = KT−2xT−2. (2.2.9)

The control uT−2 is a linear function of state xT−2 with control matrix
KT−2. The optimal value function at t = T − 2 can be found as

J∗(xT−2, T − 2) = xT−2
>QxT−2 + xT−2

>K>T−2RKT−2xT−2

+ xT−2
>(A + BKT−2)

>VT−1(A + BKT−2)xT−2

= xT−2
>(Q + K>T−2RKT−2 + (A + BKT−2)

>VT−1(A + BKT−2))xT−2
.
= xT−2

>VT−2xT−2.
(2.2.10)

Observe that in this time step, the value is also quadratic in state.
Therefore, we can derive similar results of linear control and quadratic
value for every time step prior to t = T − 2:

Kt = −(R + B>Vt+1B)−1B>Vt+1 A

Vt = Q︸︷︷︸
current cost

+ K>t RKt︸ ︷︷ ︸
cost of action at t

+ (A + BKt)
>Vt+1(A + BKt)︸ ︷︷ ︸

cost to go

(2.2.11)

and the optimal value function is,

J∗(xt, t) = xt
>Vtxt. (2.2.12)



lqr: the analytic mdp 27

Algorithm 7 summarizes value iteration for LQRs:

Algorithm 7: LQR value Iteration

Algorithm OptimalValue(A, B, Q, R, t, T)
if t = T − 1 then

return Q
end
else

Vt+1 = OptimalValue(A, B, Q, R, t + 1, T)
Kt = −(R + B>Vt+1B)−1B>Vt+1 A

return Vt = Q + K>t RKt + (A + BKt)>Vt+1(A + BKt)

end

The complexity of the above algorithm is a function of the horizon T,
the dimensionality of the state space n, and the dimensionality of the
action space k: O(T(n3 + k3)).

Convergence of Value Iteration

What about the infinite horizon version of the LQR problem? That is,
we are considering

Jπ(xt) =
∞

∑
t=0

ct(xt, π(xt, t)). (2.2.13)

Recall that in the finite horizon LQR problem, Kt and Vt are com-
puted backward in time as,

Kt = −(R + B>Vt+1B)−1B>Vt+1 A

Vt = Q + K>t RKt + (A + BKt)
>Vt+1(A + BKt).

(2.2.14)

One natural idea is to keep applying (2.2.14) until Kt and Vt con-
verge to a fixed point. The associated question is thus, do Kt and Vt

always converge? And further, if they do not always converge, when
do they actually converge? The answer is, Kt and Vt converge if the
system is so called stabilizable,5 and they converge to the solution to 5 Brian D. O. Anderson and John B.

Moore. Optimal Control: Linear Quadratic
Methods. Prentice-Hall, Inc., 1990

the Discrete Algebraic Ricatti Equation (DARE): 6

6 The conditions for LQR to converge
are effectively identical to that of any
other value iteration problem. It’s
enough here that we can asymptotically
drive all the state variables to 0.

V = Q + K>RK + (A + BK)>V(A + BK)

K = −(R + B>VB)−1B>VA (2.2.15)

Moreover, the K and V that solve the DARE indeed yield the optimal
policy for the infinite horizon LQR problem. We can view V as a
combination of the cost of current state and control, along with the
future cost. If the system is not stabilizable, for example, a system
of two motors controlling two inverted pendulums with one of the
motors broken, then Kt and Vt no longer converge. However, the
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value iteration will still return the policy that can get the system
to work as well as possible by using the good motor to attempt to
stabilize the system. On the infinite horizon, it may, of course lead
to a diverging value estimate– in essence, the issues that happen in
finite state spaces with non-converging value functions can happen in
solving the Ricatti equation. 7 7 There are linear-algebraic methods

to solve the Ricatti equations as well
as simply the natural Value-Iteration
backup procedure; these can be more
computationally efficient, but are rarely
required

2.3 Extensions of LQR

In the following sections, we continue to expand the domain of appli-
cability of the general strategy for solving LQR problems developed
above. The basic techniques that we will augment LQR with include

1. Allowing the system to be time varying

2. Allowing general affine systems (via homogenous coordinates or
direct derivation)

3. Moving from controls to “deviations” in control

4. Iteratively re-linearizing

We visit each of these incrementally, as it’s useful to see each addi-
tion, and end up with a general algorithm for a wide class of control
problems.

Tracking Trajectories with LQR

The method described in Algorithm 7 will not work for a pendulum
“swing up” problem, since the system dynamics at θ = 0◦ (unstable)
and θ = 180◦ (stable) are qualitatively different. Linearization will
fail as the linearized model (2.1.3) is a good approximation of the
non-linear dynamics only at a small region around θ = 0◦.

Given a trajectory, possibly recorded from an expert demonstra-
tion, (xt, ut) from θ = 180◦ to θ = 0◦ (see Fig 2.3.1), one might
imagine that it could simply be replayed to balance the inverted
pendulum. However, this doesn’t work in practice due to modeling
error– moreover, the same sequence of controls is unlikely to produce
exactly the same behavior when played twice on a real system due
to minor variations in the system. However, a reference trajectory
can still be useful. One way to use an expert trajectory in presence of
uncertainty, is to use LQR tracking, which we describe below. Be-
fore describing how tracking works, we first introduce several minor
variations on the LQR approach, including LQR for Linear Time Vary-
ing dynamical systems, Affine Quadratic Regulation, and LQR with
stochastic dynamics.
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Figure 2.3.1: Solving inverted
pendulum swing up using LQR
tracking.

LQR for Linear Time-Varying Dynamical Systems

Thus far, we have assumed that we were modeling a linear, time-
invariant system. As we will see, we might be interested in systems
that are linear, but time varying

xt+1 = Atxt + Btut (2.3.1)

c(xt, ut) = xt
>Qtxt + u>t Rtut (2.3.2)

In this case, the LQR equations are simply updated to

Kt = −(B>t Vt+1Bt + Rt)
−1B>t Vt+1 At (2.3.3)

Vt = Qt + K>t RtKt + (At + BtKt)
>Vt+1(At + BtKt) (2.3.4)

Affine Quadratic Regulation

Let’s now consider a generic affine system with time varying dynam-
ics At and Bt and a state offset xoff

t :

xt+1 = Atxt + Btut + xoff
t . (2.3.5)

Affine problems can be converted to linear problems by using homo-
geneous coordinates8: 8 https://en.wikipedia.org/wiki/

Homogeneous_coordinates

x̃ =

[
x
1

]
(2.3.6)

x̃t+1 =

[
At xoff

t
0 1

]
x̃t +

[
Bt

0

]
ut

.
= Ãt x̃t + B̃tut (2.3.7)

This is just a new LQR problem with modified state and dynamics
and a new cost defined as c(x̃t, ut) = x̃>t Q̃t x̃t + u>t Rtut, where the
choice of Q̃ is problem dependent. We will later see how we can
design Q̃ for the tracking problem. The Affine Quadratic Regulation
problem can then be solved in exactly the same way as the LQR
problem.9 9 Essentially the same trick can be

applied to enable us to have linear
cost functions terms in the controls as
well, but we defer this to the general
formulation derived at the end.

https://en.wikipedia.org/wiki/Homogeneous_coordinates
https://en.wikipedia.org/wiki/Homogeneous_coordinates
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Tracking

There are two natural formulations for a tracking cost function:

ct(xt, ut) = (xt − x∗t )
>Q(xt − x∗t ) + (ut − u∗t )

>R(ut − u∗t ) (2.3.8)

ct(xt, ut) = (xt − x∗t )
>Q(xt − x∗t ) + u>t Rut (2.3.9)

where x∗t and u∗t are the nominal trajectory and nominal control
input obtained from the expert (not necessarily optimal ones!). Q
penalizes the deviation from the nominal trajectory and R penalizes
either the deviation from the nominal controls or is just a penalty on
the control (e.g. lots of actuation is bad).

Expanding the term corresponding to state error in the cost func-
tion:

(xt − x∗t )
>Q(xt − x∗t ) = x>t Qxt + x∗t

>Qx∗t︸ ︷︷ ︸
constant at time t

− 2x∗t
>Q︸ ︷︷ ︸

constant at time t

xt

= x>t Qxt + dt − 2q>t xt,

where dt
.
= x∗t

>Qx∗t and qt
.
= Qx∗t . Next, we choose a Q̃t defined as:

Q̃t =

[
Q −qt

−q>t dt

]
,

such that the state error term of the cost function can be formulated
as x̃>t Q̃t x̃t, where x̃t is the homogeneous coordinates in (2.3.6). Note
that dt is a constant, which only shifts the cost function in an uninter-
esting way.

For cost functions with the control error term of the form (ut −
u∗t )
>R(ut − u∗t ), let ũt = (ut − u∗t ). Then the corresponding term of

the cost function can be modified as ũ>t Rũt. In order to use ũt instead
of ut in the cost function defined as in Eq. 2.3.8, the dynamics needs
to be modified as follows:

x̃t+1 =

[
At xoff

t + Btu∗t
0 1

]
x̃t +

[
Bt

0

]
ũt. (2.3.10)

The modified cost function is:

ct(x̃t, ũt) = x̃>t Q̃t x̃t + ũ>t Rũt. (2.3.11)

Solving the LQR for the system using the above cost function

ũt = −K̃t x̃t.

Subsequently ut is obtained as ut = ũt + u∗t .
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2.4 Iterative LQR (iLQR)

So far, we have seen how to use LQR to solve problems with linear
(or affine) dynamics and quadratic costs. However, real world sys-
tems will only rarely be close to linear. 10 10 There is a well-known saying among

control theorists,

Classifying systems as linear
and nonlinear is like classify-
ing the Universe as bananas
and non-bananas.

Differential Dynamic Programming (DDP) 11 is a general approach 11 D. H. Jacobson and D. Q. Mayne.
Differential Dynamic Programming.
Elsevier, 1970

to using quadratic approximations of the value function to solve a
broader class of control problems than merely linear-Gaussian. It-
erative LQR (iLQR) is a simplified variant of DDP, an approach that
repeatedly solves LQR (actually affine!) problems to solve for a lo-
cally optimal change to a trajectory and a controller around that. The
idea of iLQR is very closely related to Newton’s method (where we
first approximate the objective function to a quadratic function, mini-
mize it, and iterate until convergence). In iLQR, we first approximate
the dynamics with an affine model and approximate the cost func-
tion with a quadratic function. Crudely speaking, we then solve the
LQR problem for the resulting approximate problem, and iterate the
process until convergence.

The algorithm

The general iLQR strategy is as follows:

1. Propose some initial (feasible) trajectory {xt, ut}T−1
t=0

2. Linearize the dynamics, f about trajectory:

∂ f
∂x

∣∣∣∣
xt

= At,
∂ f
∂u

∣∣∣∣
ut

= Bt

Linearization can be obtained by three methods:

(a) Analytical: either manually or via auto-diff, compute the correct
derivatives.

(b) Numerical: use finite differencing.

(c) Statistical: Collect samples by deviations around the trajectory
and fit linear model.

3. Compute second order Taylor series expansion the cost func-
tion c(x, u) around xt and ut and get a quadratic approximation
ct(x̃t, ũt) = x̃>t Q̃t x̃t + ũ>t R̃tũt where the x̃t, ũt variables represent
changes in the proposed trajectory in homogenous coordinates. 12 12 We haven’t derived using homoge-

neous coordinates in control; it’s essen-
tially equivalent to simply completing
the square and finding a “nominal”
control. Instead of pursuing yet an-
other step-wise generalization, in the
appendix to these notes presents the
general derivation.

4. Given {At, Bt, Q̃t, R̃t}T−1
t=0 , solve an affine quadratic control prob-

lem and obtain the proposed feedback matrices (on the homoge-
neous represenation of x).
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5. Forward simulate the full nonlinear model f (x, u) using the com-
puted controls {ut}T−1

t=0 that arise from feedback matrices applied
to the sequence of states {xt}T−1

t=0 that arise from that forward sim-
ulation.

6. Using the newly obtained {xt, ut}T−1
t=0 repeat steps from 2.

Issues with iLQR

• Q and R can be indefinite when the actual cost function is not
convex. Hacks that are typical in the literature include:

– Projection: Q = U Σ︸︷︷︸
set negative Eigenvalues to 0

U>. Formally, this

can be shown as finding the closest (in L2 sense cost matrix that
actually is PSD.

– Regularize: Increase the diagonal values until Q becomes posi-
tive definite: Q = Q + λI

• Trust regions: Sometimes the approximation of the cost function
is poor and in such cases its a good idea to restrict the step size
(deviation from the trajectory of the previous iteration) while
executing the control. This can be accomplished in the following
ways:

– interpolate between the control at current iteration and the
previous iterations

– Modify cost to penalize derivation from the trajectory of the
previous iteration:

c̃ = c+ α · (penalty for deviation from the previous trajectory in controls or states)

These last known as control and state damping are extremely com-
mon in real-world implementations.

• Some notes:
LQR recieved significant practical criticism in the 1970s as it was
difficult to prevent the resulting synthesized controllers from ex-
citing dynamics that were under-modeled. Without care, LQR
(particularly using filtered estimates of the true state, rather than
“oracle” access to the true state) will often generate, “stiff”, high
frequency controls that are not robust. Some common modifi-
cations to damp high frequency control from being generated
include:

– Penalize changes in control from previous control. This is to
ensure that the control is smooth. Higher order of smoothness
can be obtained by passing the control signal through a filter,
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modeled in the system dynamics, and then using the output of
that as “effective” control input for the system.

– More generally, we can implement a filter on the execute control
dynamics by storing previous controls in the state vector and
penalizing any linear operation on these.

It’s often useful to model latency by a simple "loading" controls
into states by including that delay in the dynamics:[

xt

ut−1

]
=

[
A B
0 0

] [
xt−1

ut−2

]
+

[
0

ut−1

]
. (2.4.1)

This method for modeling delay is crude but effective. More so-
phisticated approaches include providing an immutable region of
controls are often used in receeding horizon control.

2.5 Differential Dynamic Programming (DDP)

The original, fancier version of approximate value iteration for locally
linear quadratic systems is called differential dynamic programming
(DDP). iLQR and DDP are very similar, the difference being that
iLQR assumes a simpler linear model for the system dynamics, while
DDP uses a full quadratic model and then truncates any terms that
are higher than second order in the value function expansion. The
result is that DDP provides a correct-to-second-order expansion
of the value function. iLQR is slightly simpler to implement than
DDP and often provides similar or better results empirically for less
computation.

Figure 2.5.1: Funnels can be a
metaphor for controllers, and
you can think of composing
funnels that cover different
parts of the space of states.

DDP (or iLQR) builds a second order approximation of the value
function, giving a quadratic bowl at every timestep. This ends up
acting like a series of funnels [2]. When you are in the area covered
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by a funnel, you are pulled toward the optimum. You can think of
composing funnels such that one funnel dumps you out into another
funnel. If you cover the entire space with funnels, then you can imag-
ine that each one is a controller that is good in a certain section of
the space (See Figure 2.5.1). With iLQR, we built a quadratic value
function about a particular trajectory, but you can imagine starting
somewhere else. If you can get from that starting point into the re-
gion covered by your value function, then you already know what to
do from there. Chris Atkeson wrote a classic paper on this subject,
in which he looks at covering the state space with DDP policies [3].
Imagine an inverted pendulum: there will be some controller that is
good for the near-vertical case. One can then have other controllers
covering other parts of the space, and each controller gets closer to
the set of states it knows how to handle, funneling states towards the
goal.

LQR with Stochastic Dynamics

The treatment of the Linear Quadratic Control problem up until
now has assumed that the dynamics of the system are deterministic:
the next state of the system can be determined precisely from the
previous state and the control input.

xt+1 = Axt + But (2.5.1)

Figure 2.5.2: Robot in grid
world showing optimal pol-
icy for deterministic (red) vs.
stochastic (green) motion.

It is not at all clear, however, that the policy built for the deter-
ministic case is the policy that you would follow if you knew there
was noise. For example, imagine a robot in a grid world (See Figure
2.5.2). The robot is positioned on the opposite side of two obstacles
from the goal (pot of gold). Hitting an obstacle is catastrophic for the
robot, but there is just enough space for the robot to drive between
the two obstacles to reach the goal. If the robot’s motion is determin-
istic, then the best policy is to drive between the obstacles. But if the
robot’s motion is stochastic, and with a 10% probability, the robot
moves in a random direction instead of the commanded direction,
then the best policy is to avoid walking the tightrope between the
dangerous obstacles, and to instead go around the obstacles.
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We can extend LQR to handle a simple case of stochastic dynamics
and derive the optimal policy for this case. We will assume that at
each time step, a zero mean Gaussian perturbation affects the state 13.

xt+1 = Axt + But + εt (2.5.2)
13 Note that the noise that we are
adding is motion model noise. We are
not considering a non-trivial observa-
tion model here.

where εt ∼ N (0, Σ). xt+1 can also be written as

xt+1 ∼ N (Axt + But, Σ) (2.5.3)

Recall that for the deterministic case, the optimal policy at time t,
π∗t , is given by finding the action that minimizes the sum of action
cost and cost-to-go from the resulting state

π∗t = argmin
ut

c(xt, ut) + J∗(xt+1, t + 1) (2.5.4)

The problem is that in the stochastic case, the next state xt+1 can
not be predicted exactly. As with value iteration, the solution is to
replace the optimal cost-to-go J∗ by the expected value of J∗ given
the previous state and selected action. The expression for π∗t thus
becomes

π∗t = argmin
ut

c(xt, ut) + E [J∗(xt+1, t + 1)] (2.5.5)

The expectation term in this expression is the integral

E [J∗(xt+1, t + 1)] =
∫

X
x>t+1Vt+1xt+1N (xt+1; Axt + But, Σ)dxt+1

(2.5.6)
This integral belongs to a class of integrals called Gaussian Integrals
and has a simple closed form solution.∫

(x− b)>P(x− b)N (x; µ, Σ)dx = (µ− b)>P(µ− b) +Tr [PΣ] (2.5.7)

substituting we get

E [J∗(xt+1, t + 1)] = (Axt + But)
>Vt+1(Axt + But) + Tr [Vt+1Σ]

(2.5.8)
or, since J∗(xt, t) = x>t Vtxt,

E [J∗(xt+1, t + 1)] = J∗(Axt + But, t + 1) + Tr [Vt+1Σ] (2.5.9)

Thus using the expectation of the optimal cost-to-go in the stochastic
case gives almost the same expression as using the value of cost-to-
go in the deterministic case. The only difference is the trace term
which is a constant when Σ is fixed or depends only on t. Since all
the values under the argmin are shifted by the same constant value,
the policy will remain unchanged by the presence of noise, even
though the value function has changed. The new trace term added to
the cost-to-go can be considered the cost incurred due to uncertainty.
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It should be emphasized that this analysis only holds when Σ is
independent of the control u. In many real settings, this does not
hold. For example, on a robot, the larger the motion the larger the
induced uncertainty in position is.

2.6 Related Reading

[1] Y Tassa, T Erez, E Todorov. “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization.” IEEE/RSJ
International Conference on Intelligent Robotcs and Systems, 2012

[2] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential com-
position of dynamically dexterous robot behaviors.” International
Journal of Robotics Research, 18(6):534–555, June 1999.

[3] C. G. Atkeson, “Using Local Trajectory Optimizers to Speed Up
Global Optimization”, Proceedings of Neural Information Process-
ing Systems, December 1993.

2.7 Appendix: Derivation of the General ILQR Backup steps

The following provides a detailed derivation of the iLQR approach.
At each iteration of the algorithm, we execute a proposed current
policy to get a trajectory. That we compute the dynamic program
below to provide an update to that policy. This is iterated until con-
vergence.
Given the true dynamics F, we can find the Taylor expansion around a proposed trajectory (xt?, ut?):

xt+1 = A(xt − xt?) + B(ut − ut?) + F(xt?, ut?)

⇒ xt+1 − xt+1? = A(xt − xt?) + B(ut − ut?)

zt+1 = Azt + Bvt

where we define zt = xt − xt? as the change to the state trajectory and vt = ut − ut? as the change to the control
trajectory.

Similarly, given the true cost function C, the second order taylor expansion is:

ct(xt, ut) =
1
2
[(xt − xt?)

T , (ut − ut?)
T ]H

[
(xt − xt?)

(ut − ut?)

]
+ gT

[
(xt − xt?)

(ut − ut?)

]
+ C(xt?, ut?)

=
1
2
[(xt − xt?)

T , (ut − ut?)
T ]

[
Q P
PT R

] [
(xt − xt?)

(ut − ut?)

]
+ [gT

x , gT
u ]

[
(xt − xt?)

(ut − ut?)

]
+ C(xt?, ut?)

=
1
2
(xt − xt?)

TQ(xt − xt?) + (xt − xt?)
T P(ut − ut?) +

1
2
(ut − ut?)

T R(ut − ut?) + gT
x (xt − xt?) + gT

u (ut − ut?) + c

and thus that we can right down a cost function in the changes to state/action as:

⇒ c(zt, vt) =
1
2

zT
t Qzt + zT

t Pvt +
1
2

vT
t Rvt + gT

x zt + gT
u vt + c
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Dynamic Programming (Value-Iteration) Backup

Assume we have now a control policy of the form of a “feedforward” update term kt and feedback term KT that is a
linear controller response to “errors” in zT :

vT = KTzT + kT , (2.7.1)

Inductively, we assume the next-state value function (i.e. of the future timestep) can be written in the form,

JT+1 =
1
2

zT+1VT+1zT+1 + GT+1zT+1 + WT+1. (2.7.2)

Since

zT+1 = AzT + BvT (2.7.3)

= AzT + B(KTzT + kT) (2.7.4)

= (A + BKT)zT + BkT , (2.7.5)

we can write, JT+1 as:

JT+1 =
1
2
((A + BKT)zT + BkT)

TVT+1((A + BKT)zT + BkT) + GT+1((A + BKT)zT + BkT) + WT+1 (2.7.6)

=
1
2

zT
T(A + BKT)

TVT+1(A + BKT)zT +
1
2

kT
T BTVT+1BkT + kT

T BTVT+1(A + BKT)zT (2.7.7)

+ GT+1(A + BKT)zT + GT+1BkT + WT+1 (2.7.8)

=
1
2

zT
T(A + BKT)

TVT+1(A + BKT)zT +
(

kT
T BTVT+1(A + BKT) + GT+1(A + BKT)

)
zT (2.7.9)

+ GT+1BkT +
1
2

kT
T BTVT+1BkT + WT+1 (2.7.10)

Additionally, we can write the cost cT(zT , vT) as:

cT =
1
2

zT
TQzT + zT

T PvT +
1
2

vT
T RvT + gT

x zT + gT
u vT + c + JT+1 (2.7.11)

=
1
2

zT
TQzT + zT

T P(KTzT + kT) +
1
2
(KTzT + kT)

T R(KTzT + kT) + gT
x zT + gT

u (KTzT + kT) + c (2.7.12)

=
1
2

zT
TQzT + zT

T PKTzT + kT
T PTzT +

1
2

zT
TKT

T RKTzT +
1
2

kT
T RkT + kT

T RKTzT + gT
x zT (2.7.13)

+ gT
u KTzT + gT

u kT + c

=
1
2

zT
T

(
Q + 2PKT + KT

T RKT

)
zT +

(
kT

T PT + kT
T RKT + gT

x + gT
u KT

)
zT +

1
2

kT
T RkT + gT

u kT + c (2.7.14)

Then, we can write JT = cT(zT , vT) + JT+1 = 1
2 zT

TVTzT + GTzT + WT by combining like terms from above, where

VT = Q + 2PKT + KT
T RKT + (A + BKT)

TVT+1(A + BKT) (2.7.15)

GT = kT
T PT + kT

T RKT + gT
x + gT

u KT + kT
T BTVT+1(A + BKT) + GT+1(A + BKT) (2.7.16)

WT =
1
2

kT
T RkT + gT

u kT + c + GT+1BkT +
1
2

kT
T BTVT+1BkT + WT+1 (2.7.17)

We find the control policy by minimizing JT with respect to vT .

vT = min
vT

cT + JT+1 (2.7.18)

= zT
T PvT +

1
2

vT
T RvT + gT

u vT +
1
2
(AzT + BvT)

TVT+1(AzT + BvT) + GT+1(AzT + BvT) (2.7.19)

=
(

zT
T P + zT

T ATVT+1B
)

vT + (GT+1B + gT
u )vT +

1
2

vT
T

(
R + BTVT+1B

)
vT (2.7.20)

(2.7.21)
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Taking the derivative with respect to vT and setting equal to 0, we get,

0 =
(

PT + BTVT+1 A
)

zT + (BTGT
T+1 + gu) +

(
R + BTVT+1B

)
vT (2.7.22)

vT = −
(

R + BTVT+1B
)−1 (

PT + BTVT+1 A
)

zT −
(

R + BTVT+1B
)−1

(BTGT
T+1 + gu) (2.7.23)

= KTzT + kT (2.7.24)

where KT = −
(

R + BTVT+1B
)−1 (

PT + BTVT+1 A
)

and kT = −
(

R + BTVT+1B
)−1

(BTGT
T+1 + gu).

Plugging this resulting policy back in to the expression for VT , GT and WT completes the dynamic programming by
providing us a quadratic form for the value function. (Note that WT and c are actually irrelevant as they are constants
in the optimization)
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Receding Horizon Control and Practical Trajectory Op-
timization





4
Practical Optimization: Constraints and Games

4.1 Introduction to Games and Constraints

This lecture focuses on a class of techniques for managing constraints in
optimization problems that arrive either in machine learning or control. The
below set of techniques are ones we’ve found quite helpful in practice.

There are a few general classes of approach to managing constraints and
the details of which is “best” depends on requirements on speed and on
quality of the required constraint satisfaction and final cost. There are strong
inter-relations between them, but certain ones are usually preferred. The
lecture below assumes an equality constraint, but each result can be derived
for inequality constraints.

4.2 Reparameterization

Arguably the “simplest” technique, when viable, is reparameterization—
i.e. reformulate the variables so the constraint must be satisfied. We might
call that the physics way: if temperature is empirically lower bounded, re-
expresses in 1/T, or if velocity is upper-bounded, re-express dynamics to
enforce relativistic constraints. This is also the critical technique of the beau-
tiful theory of Generalized Linear Models, where, e.g., we express binomial
probabilities as unconstrained logits pushed through a logistic function. It’s
also fundamental to the “shooting” methods of trajectory optimization and
control like iLQR, where dynamic constraints are explicitly formulated by
forwarding simulating controls (that may exist only to satisfy the reparame-
terization).

Reparameterization naturally allows us to express uncertainty over, e.g.
controls, because we can use the Laplace approximation in the reparameter-
ization to get meaningful uncertainty estimates. 1 For instance, in a control 1 B. D. Ziebart, J. Andrew Bagnell, and

A. K. Dey. Modeling interaction via the
principle of maximum causal entropy.
In Proceedings of the 27th International
Conference on Machine Learning, 2010

application, if we reparameterize a positive-only velocity components as
speed = elog_speed, we can produce posterior confidence intervals on speed
that satisfy the constraints as well by passing through the reparameterization.
Reparameterization equally allows feedback gains in techniques like iLQR to
continue to be useful.

Slow convergence can result as we get close (or initialize unfortunately
close), as the effect of reparameterization (and a cost on that variable) be-
comes like a barrier function and leads to very ill-conditioned problem and
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effectively cost “plateaus”. We have seen this behavior as a general issue
with interior point methods, although that observation is a frequent point of
contention. Also, for optimal control problems, reparamertization typically
buries more non-linearity in the state transition dynamics and this may be
ignored by some methods (e.g. iLQR, in contrast with classical Differential
Dynamic Programming).

4.3 Lagrange (Primal-Dual) Methods

We’ll begin by considering the problem of minimizing f (x) subject to the
constraint g(x) = 0.

Lagrange methods convert constraints into a saddle point problem– i.e.
a game where the “dual” (multiplier player) attempts to take advantage of
any violation of constraints. We must find solutions where the dual player
can’t win, and if we do, we guarantee satisfying the constraints. A surprising
range of practical methods for constrained optimization look like “apply
some simple optimization strategy to the dual problem”. 2 2

Gradient/ExpGrad on multipliers

Defining the dual:
D(λ) = min

x
f (x)− λT g(x),

it’s straightforward to take
maxλD(λ)

and simply compute sub-gradients (assuming, e.g. f (x) is convex, otherwise
we’re estimating a still more general notion of derivative and an applica-
tion of Danskin’s theorem) of D. Note this is “easy” as ∇λ minx L(x, λ) =

∇λL(x∗, λ) where x∗ = argmin f (x)− λT g(x). (Where this is being evaluated
at some specific λ!)

We can then simply run our favorite derivative based optimizer (heavy-
ball momentum, sub-gradient, Exponentiated Gradient Descent, etc.) on this
dual. We note the problem may very well not be strongly concave in λ: that
is, we may have essentially no curvature in λ– necessitating slow step size
decreases, controlled/stable optimization in general, and potentially even
uphill steps. 3 3 We note in passing the the subgradient

method is equivalent to two related,
natural algorithms: a) Iteratively lin-
earizing the objective function and
providing a shrinking regularization
to 0. b) Iteratively linearizing the ob-
jective function and regularizing to the
previous location.

These are special cases of two differ-
ent, stable, optimization strategies (a)
FTRL (Follow the Regularized Leader)
and (b) Mirror Descent (Proximal De-
scent/Trust Region) that are popular in
game solving and online learning, and
under linearization happen to collapse
to the same classical gradient descent.

To see (b), note:

argmin
x
∇ f (xlast)

T x +
α

2
||x− xlast||2

is solved by,

x = xlast −
1
α
∇ f (xlast),

which is gradient descent with learning
rate 1

α .

Regularized Lagrangian Optimization / Penalty Methods

A natural way to frame the optimization problem in light of the potential
instability in optimizing the dual is to consider the regularization (see side
note) that is implicit in gradient descent. That is, we can consider the Regu-
larized Lagrangian (ReLa):

maxλD(λ) +
α

2
λ2

This form ensures compact level sets for the optimization and lets us
actually solve the problem without solutions in λ running away to infinity.

I’ll assume below that with regularization we can safely assume strong
duality for the problem. (That’s very much unnecessarily strong, as we can
converge to a dual solution anyway, but it saves time/thought.)
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Given strong duality, we can swap the min and max and solve the dual:

min
x

maxλ f (x)− λT g(x)− α

2
λ2

But note that the inner maximization is now closed-form. That is, if com-
pute ∇λ, we get back:

λ = − 1
α

g(x)

Substituting in, we can now eliminate λ and solve the unconstrained prob-
lem:

min
x

f (x) +
1

2α
g(x)2

That’s particularly interesting, as what’s classically known as a penalty
method arises as simply the optimal solution of a regularized version of the
Lagrangian; penalty methods are Lagrange methods in disguise. Shrinking
the Lagrange regularization is simply scheduling the penalty, and we can
see that this is a sound method, and can even compute the sub-optimality of
the constraints from it. Finally, it provides an estimate of the dual variables
directly via the relation λ = − 1

α g(x).
The only reason not to take regularization to 0 is that we have poor con-

ditioning and extremely large gradients that which implies optimization
methods are likely suffer in the way barrier methods do— but it’s super fast
and easy to implement.

Note further that we can regularize the Lagrange multipliers in many
ways– for instance, by (unnormalized) entropy regularization. Each leads
to a dual penalty method (in this case an exponential penalty method).
Performance of these depends a great deal on the underlying optimizer as
well as our prior beliefs on the multipliers λ. If the Lagrange multipliers are
expected to have small L2 norm, we would expect classical squared-norm
regularization to be good. Entropy regularization, by contrast, we might
expect will work well when there are many constraints, but a sparse set of
multipliers are sufficient to satisfy the constraints. Adapting the literature
on such dual penalty methods is likely valuable to taking best advantage of
these techniques.

L∞ ReLa / “Exact” Penalty

An interesting exercise is to consider the Regularized Lagrangian using the
αmaxi|λi| as the regularizer. A quick calculation reveals that this leads to a
penalty method that is solving:

min
x

f (x) +
1
α
|g(x)|

This form is related to that given by the Support Vector Machine primal,
where the constraint we attempt to enforce correct labelings. The classic
hinge-loss here arises from an inequality exact penalty method on achieving
the correct label, although this is not usually how the method is described.
In practice, non-trivial regularization of the dual variables in an SVM is
assumed to prevent over-fitting.

Note however, that this form, while excellent for sub-gradient based
optimizers (AdaGrad, etc.) popular in machine learning, fails to be strongly
convex (or smooth) and thus is poorly optimized by Newton-style methods.
The advantage of this method is that a finite value of 1

α is sufficient to achieve
the constraint precisely in contrast with squared norm penalty approach.
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Augmented Lagrangian Optimization / Mirror Descent

Using Mirror Descent, where we iteratively regularize around the last so-
lution for the dual variable rather than around 0, provides a powerful gen-
eralization of penalty methods. We begin with an estimate of the Lagrange
multipliers, λ0. As with ReLa above, we consider a regularized dual of the
Lagrangian:

min
x

maxλ f (x)− λT g(x)− α

2
(λ− λi)

2

Note again that the inner optimization (with x fixed) is closed form (in
terms of the next λ to choose):

λ = λi −
1
α

g(x)

and by substitution we can eliminate λ and solve the regularized dual as a
simpler optimization in x:

min
x

f (x)− λT
i g(x) +

1
2α

g(x)2

In contrast with the penalty method, we can simply iterate. We update λ

with
λi+1 = λi −

1
α

g(x),

and re-solve the Augmented Lagrangian (AuLa) 4 problem above. 4

It’s interesting to ask why we might bother with this form, when the
penalty method is itself sufficient. A general theme in optimization is that it
can be more efficient to phrase a problem as a saddle-point-finding exercise
rather than as a difficult, pure optimization. AuLa takes the penalty method
approach and moves it back towards a game, managing to inherit both the
simplicity of each as well as better conditioning than the single optimization
solved in a penalty method. The general strategy of replacing a hard opti-
mization problem with a game-derived sequence of such is a powerful area
of research and the more detailed variant of that, the strategy of regularizing
the dual parameters 5 to ensure closed form solution is one that seems not 5

fully exploited in the literature.

Inequality Variant of Mirror Descent on Lagrangian

Perhaps the classic way to handle inequalities in the Lagrange methods
above is to add a slack variable with a bound constraint z ≥ 0. However, we
can actually derive variants directly using the technique above as well.

We’ll begin by considering the problem of minimizing f (x) subject to the
constraint g(x) ≥ 0. Following the logic above and applying duality, we can
form a regularized or augmented Lagrangian as:

min
x

maxλ≥0 f (x)− λT g(x)− α

2
(λ− λi)

2

Solving for λ (note this happening component-wise in λ and I’m glossing
over that) gives us,

λ = max(0, λi −
g(x)

α
)

Eliminating λ, we have, again component-wise, but I’m too lazy to index into
λ and thus I’m treating it like it’s a scalar/single constraint: If (λi − g(x)

α ) >
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0, we are minimizing

f (x)− λT
i g(x) +

g(x)2

2α

and otherwise,

f (x)− αλ2
i

2
This result is continuous and differentiable, but it is not twice so, so YMMV.
The primal problem can also have achieve a minima with a negative objective
value, which is somewhat annoying. Again we iterate the algorithm by re-
estimating

λi+1 = max(0, λi −
g(x)

α
)

and solving again for x.

4.4 Projected Gradient

A remarkably simple method, which is often very useful in machine learn-
ing, is to take a gradient step and then project (in the sense of finding the
nearest location in the constraint set in Euclidean norm) onto the constraint
set. If constraints are simple and convex, this method will accelerate conver-
gence relative to the unconstrained problem, at least for convex losses. 6 This 6 M. Zinkevich. Online convex pro-

gramming and generalized infinitesimal
gradient ascent. In Proceedings of the
20th International Conference on Machine
Learning (ICML), 2003

is because we guarantee each projection step takes us closer to the optima in
the set.

This method fundamentally relies upon the projection step being simple:
for instance onto a unit ball or with bound constraints. Both of these are
trivially implemented as normalization and thresholding, respectively. These
style of constraints are quite common on ML applications like support vector
machines (SVMs) 7. Unfortunately, the simplicity of the Projected Gradient 7 N. Ratliff, J. A. Bagnell, and M. Zinke-

vich. (Online) subgradient methods for
structured prediction. In Proceedings of
the International Conference on Artificial
Intelligence and Statistics (AISTATS), 2007

approach is compromised when using methods (for instance, Gauss-Newton
or AdaGrad) that rely on a non-trivial metric: the projection must take place
using the same metric (i.e. the same notion of closeness) to ensure good be-
havior. One can convince one self of counter-examples to proper convergence
using Euclidean projection combined with Newton steps.

4.5 Related Reading

[1] Bertsekas, D. Nonlinear Programming: 3rd Edition. Athena Scientific,
2016.

[2] Toussaint, M. A tutorial on Newton methods for constrained trajectory opti-
mization and relations to SLAM, Gaussian Process smoothing, optimal control,
and probabilistic inference. In Geometric and Numerical Foundations of
Movements, Springer, 2017.





5
Policy Iteration

We saw in previous notes that value iteration can be used to find an optimal
policy efficiently. Interestingly, in later rounds of value iteration, the best
action at each state rarely changes. Put in other words, the policy implicitly
defined by the value function appears to converge more rapidly than the
value function itself. This insight suggests approaches that attempt to update
an explicit estimate of the optimal policy rather than only an explicit estimate
of optimal value function (with the policy implicit).

Policy Evaluation

In order to update the policy, we need some way to measure its performance.
Fortunately, we have a way to do this: we can simply compute the value
function for a fixed policy. We can use the value function Vπ(x, t) to denote
the expected cost-to-go of a policy π in state x at time t. The process of find-
ing Vπ is called policy evaluation. We can use a policy evaluation algorithm to
tell us how good one policy is to compare to others or suggest modifications.

Recall from the first chapter that we can compute the value function for a
given policy π through the following algorithm:

Algorithm 8: Dynamic Program for creating an optimal value
function on the infinite horizon by finite horizon approximation

Algorithm EvaluatePolicy(x, π,T)
for t = T − 1, . . . , 0 do

for x ∈ X do
if t = T − 1 then

V(x, t) = c(x, π(x, t))
end
else

V(x, t) = c(x, π(x, t)) + γ ∑
x′∈X

p(x′|x, π(x, t))V(x, t)

end
end

end
return V

If π is stationary (not a function of time) 1 then as t → ∞ the value 1 Notably under assumptions that en-
sure convergence of the value function.
If γ < 1 or, if, with probability 1, π
enters a terminal state having zero cost.

function converges to fixed point satisfying the following Bellman Equation:

Vπ(x, t) t→∞−−→ Vπ(x) = c(x, π(x)) + γ ∑
x′

p(x′|x, π(x))Vπ(x′)
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Note that this equation is linear in Vπ(x). While this can be solved via pol-
icy iteration, an alternate way to compute this is to solve a system of linear
equations.

Let
−→
cπ and

−→
Vπ be vectors of length |X| listing the cost and cost-to-go,

respectively for ∀x ∈ X.

−→
Vπ = −→c + γPπ−→Vπ (5.0.1)

⇒ (I − γPπ)
−→
Vπ = −→c (5.0.2)

where Pπ is the row stochastic transition matrix (its rows sum to 1) given the
the fixed policy π

Pπ =


p(x0|x0, π(x0)) p(x1|x0, π(x0)) . . .

...
...

...
p(x0|xn, π(xn)) p(x1|xn, π(xn)) . . .

 (5.0.3)

The operation of multiplying by Pπ is the equivalent of calculating expecta-
tion. This is a linear equation in

−→
Vπ and its solution is

−→
Vπ = (I − γPπ)−1−→c (5.0.4)

For γ < 1 this equation always has a solution (the eigenvalues of Pπ have
modulus always less than one, so I − γPπ is always invertible).

Policy Improvement

If someone hands you a policy π, it is natural to want to see if it is optimal,
and if not, to improve it (see Figure 5.0.1). Then, the question becomes, how
can we tell that whether the policy is optimal? And, more importantly, if
the policy is not optimal, “how can we modify the policy so that it becomes
better, and eventually, optimal?” (See Figure 5.0.1) Policy improvement seeks to
answer these questions.

Figure 5.0.1: The left image
shows a non-optimal policy
(green arrows). The right image
shows how the policy could
be improved by changing the
action taken on a state-by-state
basis. The new policy is still not
optimal and could be improved
by another round of policy
iteration.

In the policy improvement step, the policy is modified as follows ∀x ∈ X:

π′(x) = argmin
a

c(x, a) + γ Ep(x′ |x,a)[V
π(x′)]. (5.0.5)

We can show that the new policy π′ given by (5.0.5) will be at least as
good as π. Moreover, as we shall see later, if the resulting policy π′ is the
same as the current policy π, then π is the already the optimal policy. Put
differently, we only have an optimal policy if there is no change at any single
state we can make that would appear to incur less long term cost.
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Policy improvement can also be expressed in terms of Qπ(x, a), the quality
function, sometimes called the Q-function or action value function. The Q-
function Qπ(x, a) is the sum of the cost of performing an action a at state x
and the expected cost to go from the resulting state under policy π.

Qπ(x, a) = c(x, a) + γ Ep(x′ |x,a)[V
π(x′)] (5.0.6)

A new policy π′ can, therefore, be formed from an existing policy π by
tweaking the action selected at a state. According to the policy improvement
step, if π′ is selected such that

π′(x) = argmin
a

Qπ(x, a). (5.0.7)

Policy Iteration Algorithm

Combining policy evaluation and policy improvement, we can get an al-
gorithm, Policy Iteration, for finding a good policy from an arbitrary initial
policy π0.

Algorithm 9: Policy Iteration. Here the policy evaluation step can
be computed by, e.g. Algorithm 8 or solving a linear system.

Start with arbitrary π0
k← 0
while not converged do

Policy Evaluation: compute Vπk

for ∀x ∈ X do
πk+1(x) = argmin

a
c(x, a) + γ ∑x′∈X p(x′|x, a)Vπk (x′)

k← k + 1
return πk(x), ∀x

5.1 Policy Iteration Optimality

During the policy iteration, the difference in value of the current policy π

and the optimal value function |Vπ(x) − V∗(x)|, decreases exponentially as
a function of number of iterations. In practice– although with very little
theoretical justification– it is found that policy iteration generally requires
fewer iterations than Value Iteration. However, it does require more work on
each iteration.

Understanding whether Policy Iteration will converge to the best policy
is not trivial. The standard argument, outlined below, uses contradiction to
show that there are no local optima, so, since each step is an improvement,
the algorithm will converge to the optimum. To see this we need to show
that:

• Policy Iteration monotonically improves

• Policy Iteration only produces no change in policy if it is at a global
optima.

Together these imply reaching a global optima in finite time if there are a
finite number of policies being considered. 2 2 Interestingly, it can be shown PI can

theoretically visit an exponentially
large set of policies, however, the
policies distance from optimality
decays geometrically in the number of
iterations.
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Monotonic Improvement

To show that the algorithm monotonically improves, we look at the improve-
ment in the value function between policies. We switch actions only if (see
Figure 5.1.1) the policy from that point onwards is an improvement.

To calculate the policy is improved, let us consider the difference between
the value functions under two policies π and π′ for a given initial state x0.
As is shown in Figure 5.1.1, let us consider the “value improvement” time-
step by time-step.

(a) Choosing action a′ in state x0
which minimizes (5.0.5) at x0, then
following π

(b) Choosing action a′ in state x1
which minimizes (5.0.5), then follow-
ing π

Figure 5.1.1: Improvement in
the value function: Blue dots
denote states, red arrows de-
note actions that minimizes
(5.0.5) for a state, blue arrows
denote actions in π.

The value improvement accrued at the initial time-step, due to the fact
that π′ chooses the action that minimizes (5.0.5) at x0, must be:

c(x0, π′(x0)) + γ Ep(x′ |x0,π′(x0))[V
π(x′)]−Vπ(x0)

=Qπ(x0, π′(x0))−Vπ(x0).

The value improvement accrued at the second time step (due to the fact
that π′ chooses the action that minimizes (5.0.5) at x1) is:

Ex1∼p1

[
c(x1, π′(x1)) + γ Ep(x′ |x1,π′(x1))[V

π(x′)]−Vπ(x1)
]

=Ex1∼p1

[
Qπ(x1, π′(x1))−Vπ(x1)

]
,

where p1(x1) = p(x1|x0, π′(x0)).
Let’s denote by pt(x) the probability of visiting state x at time t when

we start at state x0 and follow policy π′, i.e. pt = Pr[xt = x| xo, π′]. By
proceeding inductively from the above, we see that the difference between
value functions can be calculated using the following equality:

Lemma 1. Performance Difference Lemma: 3 3 J. A. Bagnell, A. Y. Ng, S. Kakade, and
J. Schneider. Policy search by dynamic
programming. In Advances in Neural
Information Processing Systems, 2003

Vπ′ (x0)−Vπ(x0) =
∞

∑
t=0

γt Ex∼pt

[
Qπ(x, π′(x))−Vπ(x)

]
By the policy improvement step, we know that Qπ(x, π′(x))− Vπ(x) ≤ 0

for all x ∈ X. This lemma implies Vπ′ (x0) − Vπ(x0) ≤ 0 holds uniformly
over all initial states and thus we see that the policy iteration algorithm
improves the policy monotonically. 4 4 Assuming everywhere the infinite

horizon value function exists, which of
course holds for γ < 1
The Performance Difference Lemma
is a powerful tool. It’s proof, and the
proof that policy improvement works in
the Policy Iteration algorithm, have the
same essential character.
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Optimality

When policy iteration has stopped making improvements, i.e. a local opti-
mum is reached,

(π, Vπ) = (π′, Vπ′ ).

In this case, we have,

Vπ(x) = Vπ′ (x) = min
a

c(x, a) + γ Ep(x′ |x,a)
[
Vπ(x′)

]
.

Note this immediately implies that (π, Vπ) are a solution to the Bellman
Equation. Therefore π′ = π∗ since (π∗, V∗) since the optimal value function–
the Bellman Equation– is unique.

5.2 Implementation Notes

Often a Modified Policy Iteration is used in practice. Modified Policy Iteration
warm-starts the policy evaluation step with the value function from the
previous step and then does a few iterations k of policy evaluation. In the
special case of k = 1, it reduces to VI (see Sutton and Barto Chapter 4).
Since the expensive part of policy iteration is the policy evaluation step, this
warm-start can greatly speed up the algorithm.

Dynamic programming algorithms (Value Iteration, Policy Iteration,
Modified Policy Iteration, etc) are expensive if the state space is large. It can
be used in its closed form (solving a linear system) if the value function is
sparse. Otherwise the value function can be approximated by:

• Linear function approximator Ṽθ(x) = θ>φ(x), where φ(x) is the feature of
the state x.

• Nearest Neighbour – for any x find the closest x′ (in the sampled space)
and return that value.

• Neural Network – a popular choice that has led to state of the art results
in games from Backgammon to Chess.

• Any other regression algorithm....

Approximating the value function is the basis for the Fitted Value Iteration
algorithm which we discuss in later lectures.

5.3 Related Reading

[1] Bagnell, J. A. , Kakade, S. Ng, A., Schneider, J. Policy Search by Dynamic
Programming, NIPS, 2003.

[2] Puterman, M. Markov Decision Processes: Discrete Stochastic Dynamic
Programming, 2005.





6
An Invitation to Imitation

Introduction

We take a detour now to study a conceptually simpler problem: that of
imitation learning. Imitation learning is the study of algorithms that im-
prove performance in making decisions by observing demonstrations from
a teacher. Consider, for instance, Figure 6.0.1, which shows a human ex-
pert tele-operating a walking robot by commanding its footstep motions.
Such motions and the decisions behind them are complex and difficult to
encode in simple, manually programmed rules. While demonstrating a de-
sired behavior may be easy, designing a system that behaves this way is
often difficult, time consuming, and ultimately expensive. Machine learn-
ing promises to enable “programming by demonstration” for developing
high-performance robotic systems.

Figure 6.0.1: Human expert
demonstration to train a
walking robot to cross very
rough terrain. Learning to Search
(LEARCH) [Zucker et al., 2011,
Ratliff, 2009] attempts to make
a footstep planner mimic the
human pilot’s choices. Imitation
learning is the study of algo-
rithms that improve decision
making through data collected
by observing an expert – often,
but not always a person who
can accomplish a task that is
hard to hand-program.
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Learning Behavior Without Generalization

Many of the references in imitation learning focus on learning fixed trajec-
tories, or on controllers to achieve such trajectories in the presence of distur-
bances. (See a detailed discussion in [Argall et al., 2009, Osa et al., 2018].)
Such work – including the foundational [Atkeson and Schaal, 1997] and the
stunning helicopter acrobatics of [Coates et al., 2009] – vividly dramatizes the
remarkable power of human demonstration. However, these approaches are
limited in their ability to generalize to new circumstances. Our focus here is
on strategies that can generalize to unfamiliar settings and base decisions on
perceptual feedback. It is important to appreciate, however, that the bound-
ary between trajectory learning approaches and general imitation learning
is not clear. Atkeson [Atkeson and Morimoto, 2003], and others, notably
[Safonova and Hodgins, 2007, Mülling et al., 2013], show that a library of
trajectories can indeed be made to generalize very broadly through clever
arbitration and blending.

Imitation 6= Supervised Learning – The Distinctions

Unfortunately, many approaches that utilize the classical tools of supervised
learning fail to meet the needs of imitation learning. We must address two
critical departures from classical supervised learning to enable effective
imitation learning.

Perhaps foremost, classical supervised machine learning exists in a vac-
uum. Predictions made by these algorithms are explicitly assumed to have
no effect on the world in which they operate. We will consider the problems
that result from ignoring the effect of actions that influence the world and
highlight simple “reduction-based” approaches that mitigate these problems
both in theory and in practice.

Second, robotic systems are typically built atop sophisticated planning
algorithms that efficiently reason far into the future. Ignoring these planning
algorithms in lieu of a reactive learning approach often leads to poor, my-
opic performance. While planners have demonstrated dramatic success in
applications ranging from legged locomotion to outdoor unstructured navi-
gation, such algorithms rely on fully specified cost functions that map sensor
readings and environment models to a scalar cost. These cost functions are
usually manually designed and hand programmed, which is difficult and
time-consuming. Recently, a set of techniques for learning these functions
from human demonstration by applying an Inverse Optimal Control (IOC)
approach to find a cost function for which planned behavior mimics an ex-
pert’s demonstration have been shown to be effective and efficient. These
approaches shed new light on the intimate connections between probabilistic
inference and optimal control. 1

1 We prefer the older, more widely used,
terminology Inverse Optimal Control
as opposed to Inverse Reinforcement
Learning (IRL) throughout. The central
premise of research in inverse optimal
control approaches to imitation learning
is that the policy to be learned by
demonstration can be thought of as
a near-optimal policy for some plant
with an unknown reward function. In
Reinforcement Learning, by contrast,
the plant itself is viewed as unknown.
Thus we are typically solving the
inverse problem of optimal control,
but not of the inverse of reinforcement
learning, rendering the phrasing IRL
somewhat misleading. Moreover, it’s
valuable to connect to the original
literature in control theory dating
back to Kalman’s [Kalman, 1964]
foundational work.

These two points are taken up in turn in the next two major sections.

6.1 Cascading Errors and Imitation Learning

Dean Pomerleau’s work 2 on learning autonomous driving is the seminal 2 D. Pomerleau. ALVINN: An Au-
tonomous Land Vehicle in a Neural
Network. In Advances in Neural In-
formation Processing Systems (NIPS),
1989

work in the field of imitation learning. Moreover, it gets right to the heart of
the differences between imitation learning and classical supervised learning.
Figure 6.1.1 demonstrates the setup of Pomerleau’s experiments on learning
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to drive the NavLab vehicle by using a neural network to map camera
images to steering angles. Pomerleau developed this procedure by driving
the car and collecting pairs of coarse camera images and steering angles. He
then trained a simple neural network in real time to take new images and
predict the resulting steering angle. 3

3 The Pomerleau works truly hold up
for today’s reader both for their impact
on autonomous vehicles and their deep
insight into the key differences between
supervised and imitation learning.

Figure 6.1.1: Pomerleau’s Au-
tonomous Land Vehicle in a
Neural Network system at work
driving the Carnegie Mellon
NavLab vehicle. Used with
permission.

Figure 6.1.2: A schematic of
Pomerleau’s ALVINN driving sys-
tem. The approach used a small
neural network to map coarse cam-
era images into a disretized set of
steering angles. Image used with
permission.

Consider a smaller, simplified version of the problem – learning to drive
a car in a video game by performing a direct mapping from screen shots
to steering angles. Figure 6.1.3 illustrates the classic supervised learning
approach to learning such a mapping. 4 4 Stephane Ross’s results [Ross et al.,

2011b, Ross, 2010a,b] applying such a
procedure using linear regression on a
simplified version of the screen image
can be seen at Supervised Tux.

Unfortunately, in this instance – as is quite common in practice – the ap-
proach fails disastrously and the learned controller quickly drives off the
road. Let’s consider what can go wrong. Of course, the learning problem

https://youtu.be/ywH9Z2NivjY
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Figure 6.1.3: A sketch of the
problem of learning to drive a
video game simulation. A per-
son drives the car around the
course and collects data. That
dataset consisting of images
and associated steering angles
is fed to a classic supervised
learning algorithm, e.g., linear
regression. The resulting policy
π is used to drive the vehicle.
Hilarity ensues.

may simply be too difficult. Perhaps we simply can’t find a classifier or re-
gressor that predicts the driver’s steering decisions with small error. Perhaps
a linear predictor is a bad choice for this problem; a richer hypothesis class
might be more useful. That turns out not to be the case – a linear predictor is
perfectly adequate for the task.

We could simply be overfitting – perhaps our training data set is too small
to produce a good solution, which can lead to poor test performance. Avoid-
ing overfitting has long been one of the central concerns in the study of
learning theory[Shalev-Shwartz and Ben-David, 2014]. However, hold-out er-
rors 5 are quite close to training errors in this example. Moreover, the learned 5 One can measure and control overfit-

ting by considering the performance
of a learned predictor on data that is
“held-out”: that is, data not available
to the learning algorithm to train its
predictor.

policy6 fails to perform well even with a very large set of training data.

6 We use policy here to refer to any
learned predictor that maps features
to actions. For discrete actions, this is
simply a classifier. The terminology is
common to optimal control and rein-
forcement learning, but is sometimes
off-putting for roboticists and experts in
supervised learning.

What goes wrong? In a nutshell, learning errors cascade in imitation learning
but are independent in supervised learning. Consider, for instance, a dis-
crete version of the problem that only predicts “steer left” or “steer right”.
Inevitably, our learning algorithm will make some error – let’s say with small
probability ε for a good learner – and steer differently than a human driver
would. At that point, the car will no longer be driving down the center of the
road and the resulting images will look qualitatively different then the bulk
of those used for training. Imitation learning has difficulty with this situa-
tion. The learner has never encountered these images before. Since learners
can only attempt to do well in expectation over a distribution of familiar
examples, an unusual image may incur further error, often with a higher
probability.

As a result, the controller driving the simulation will steer the car close to
the edge of the road – a very rare occurrence in training – and the resulting
decision will likely be quite poor. Often, the learned controller will drive off
the road, failing completely at the task. 7 7 Pomerleau’s techniques for addressing

these issues are particularly instructive.
These include synthetic data genera-
tion, the use of online learning, and
the emphasis on hard examples. This
approach effectively manages covariate
shifts similar to those caused when a
learner influences its own test distribu-
tion. [Bagnell, 2005].

More formally, we can consider an imitation learning problem of T se-
quential decisions [Ross et al., 2011a]. If we learn a classifier making ε errors
in predicting a driver’s decisions in expectation over the distribution of ex-
amples induced by the teacher, we would hope to make Tε mistakes over the
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sequence of decisions. Unfortunately, an early error may compound into a
long sequence of mistakes. As a result, the best we can hope for is O(T2ε)

mistakes[Ross and Bagnell, 2010]. 8 From a statistical point of view, our 8 It’s simplest to imagine a fixed time
horizon. This fixed T can be replaced
in analysis by notions of mixing time,
discount factor, or a notion of how
long any one mistake can propagate.
It’s therefore useful to consider T as
representing an appropriate notion
of the effective time horizon of the
problem, not the actual number of
decisions to be made.

training and test data sets are not drawn from the same distribution and
thus the supervised learning assumption of independent and identically
distributed (i.i.d.) data is badly violated.

A natural suggestion for solving this problem is to collect data for all
possible road conditions or over all images we may see. Unfortunately, it’s
difficult to obtain data for all possible inputs – the set of potential images
is very large. Worse, no learner in our hypothesis class may be capable of
handling all possible inputs. Assuming realizability – the “true” target func-
tion in our class– is generally far too strict, and algorithms that require this
generally perform poorly. [Shalev-Shwartz and Ben-David, 2014] Instead,
in machine learning we hope that there is a function in our hypothesis class
that can work well on average over the actual distribution of training data that
we encounter. 9 9 This point represents a general tension

between the techniques of analysis in
decision making and control – where
one [Ljung, 1978] often requires a
model or a controller to be uniformly
good for all possible inputs, versus
the paradigm of learning and statistics
where it is recognized that this is not
possible in high dimensional problems.
In control, the focus is on ensuring
good expected or average performance
over the distribution of examples that
actually occur. This mismatch lies at
the heart of many of the difficulties of
marrying learning and control. The
interactive method discussed here –
and no-regret learning in general –
may serve as the bridge between these
approaches.

A Simple Fix

If training data is plentiful and the time horizon is fixed and short, the com-
pounding of errors is easily addressed. To proceed, we can train a policy for
each of the T steps. The first policy is simply trained in normal supervised
learning fashion by collecting data: the camera image and the person’s steer-
ing angle at the initial decision. We train the next policy by executing the
initially learned policy for the first time step, then turning over the wheel to
the teacher. A new data set is collected for the second time step, consisting of
the input images seen by the teacher at time 2, and the resulting steering de-
cisions. A policy can then be learned for time step 2 via the usual machinery
of supervised learning. We can easily repeat this process to train the k-th step
in a time-varying policy by observing the teacher’s decisions after running
the first k− 1 steps of the learned policy [Ross and Bagnell, 2010].

It follows that each policy learned is being tested in exactly the way it
was trained. The policy encounters the same distribution of input examples–
albeit not the same actual examples! If an earlier policy makes errors, later
ones can learn to recover from them by mimicking the teacher’s recovery
strategy. This halts error compounding and achieves the error rate Tε that
one would expect in standard supervised learning.

A practical solution: DAGGer

While the above approach cleanly addresses the problem of decisions affect-
ing the input distribution in imitation learning, it is impractical for imitation
learning problems like the video game driving problem. We simply can’t
afford to train a policy for every step in a long sequence of decisions like
driving a vehicle. Moreover, this process should be unnecessary if the effec-
tive time horizon is shorter.

A solution to this problem relies on interaction: interleaving execution
and learning. In particular, at each iteration of the algorithm, the current
learned policy is executed. Throughout execution, the teacher “corrects”
the solution – that is, provides a preferred steering angle that is recorded
in a new data set but not executed. After sufficient data is collected, it is
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Figure 6.1.4: Illustration of
the Dataset Aggregration
(DAGGer) approach to im-
itation learning via repeated
interaction. At each iteration
of the algorithm, the current
learned policy is executed.
Throughout execution, the
teacher “corrects” each step –
that is, provides a preferred
steering angle that is recorded
in a new data set but not ex-
ecuted. Throughout these
iterations, data is aggregated
together to lead to the next
policy. This provides much
stronger guarantees than simple
supervised learning.

aggregated together with all of the data that was previously collected. A
supervised learning algorithm then generates a new policy by attempting
to optimize performance on the aggregated data. This process of execution
of the current policy, correction by the teacher, and data aggregation and
training is repeated.

1 # Take an i n i t i a l po l i cy : π0 , Teacher : s t a t e −> act ion ,
2 # Learner : [ ( s t a t e , a c t i o n ) ] −> pol icy , GenSystemTrajectory : π −> [ s t a t e ]
3 def DAGGER( π0 , Teacher , GenSystemTrajectory , Learn ) :
4 D = [ ] , π = π0
5 f o r i in range (N) : # run f o r N i t e r a t i o n s
6 Di = [ ( s t a t e , Teacher ( s t a t e ) ) f o r s t a t e in GenSystemTrajectory ( π ) ]
7 D. append ( Di )
8 π = Learn (D) # Optional ly run any no−r e g r e t l e a r n e r on the Di
9 re turn π

10 # Pre fer red : ins tead return the s t o c h a s t i c po l i cy t h a t mixes uniformly between a l l the
11 # p o l i c i e s learned or choose the bes t s i n g l e po l i cy on v a l i d a t i o n over the i t e r a t i o n s

DAGGer Algorithm Pseudo-code

Intuitively, this approach creates policies that are capable of correcting
their own mistakes. If the learner steers too close to the edge of the road, the
policy will generate new training data that includes the teacher’s preferred
actions for handling such situations. The aggregation of data prevents it from
forgetting previously-learned situations.

But what can one say formally about this approach? If our supervised
learner is one of a large class of learners that have the no-regret property[Cesa-
Bianchi et al., 1997], we can formalize the idea that learning a policy with
low training error implies good performance at imitating the expert. Put
differently, one of two things must happen: either the supervised learning
problem will become too hard to solve (expected error greater then ε) or a
policy that matches the teacher with only approximately Tε error over the
full horizon will be learned throughout the iterations. 10 10 It need not, however, be the final

policy learned. Instead, the claim is
merely that one of the policies– or a
uniform stochastic mixture of the entire
set learned– must perform well. In
practice, choosing the final learned
policy is often simplest and sufficient.

Stability, Online Learning and “No-regret”

Case Study: DAGGer in Anger

When we apply this approach of teacher correction, aggregating data and
iteratively learning policies to the car driving problem, the result is some-
what boring to watch. While simple supervised learning averages about 3-4
failures per lap, the interactive DAGGer learning approach with the same
number of examples from the teacher very quickly reaches nearly 0 falls per
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lap. No amount of training data enables the supervised learning approach to
achieve that same performance– it always falls multiple times per lap.

It’s more interesting to consider learning a complex, real-world reactive
control task like flying through a cluttered domain – for example, between
tree trunks underneath a forest canopy. 11 The problem follows the setup of 11 The “Forest of Endor” problem, to

use Nick Roy’s evocative phrase.Pomerleau’s: compute features (optical flow, color histograms, simple texture
features etc.), pool them over patches of the images, and provide the result-
ing large feature vector as an input to a regression algorithm. As output, the
learner will predict the commanded lateral velocity of a human pilot and
train the algorithm to reactively map these image features to controls.

The result is a simple controller that navigates through dense forest at
nearly the same effectiveness as a human pilot. [Ross et al., 2013a] 12. Inter- 12 Videos of the approach can be found

at LAIRLab BIRD Website [Ross et al.,
2013b]

estingly, failures largely come about due to the nature of a reactive controller
and a small field of view. It’s not unusual for the algorithm to dodge a tree,
have that tree leave its field of view, then crash into the same tree sideways as
it tries to avoid a new tree. Adding memory – whether through intelligently
constructed features or through predictive state representations – represents
the best hope for improving the learning of such control strategies.

Recently other authors have demonstrated in success in applying DAG-
Ger to a rich class of problems including playing a broad class of Atari 2600

games [Guo et al., 2014] and robot navigation [Kim et al., 2013].

Learning with a Goal Besides Imitation We focused entirely above on a loss
function of simple imitation: our goal is to choose the same actions as the
expert measured according to some loss function l(y, π(x)). But in many
scenarios – for instance, driving – our real goal is actually substantially
different. We may wish to minimize the probability of crashing, or maximize
our success at manipulating an object, or achieve any other control objective
that the teacher is presumably optimizing. The same style of approach is
easily adopted – albeit with potentially substantially higher computational
and sample complexity – for this setting by replacing the data about best
action with an estimate of cost-to-go from the teacher. [Ross and Bagnell,
2014] Crudely speaking, this cost-to-go is an estimate of how hard it will
be for the teacher to recover if the learner were to make a mistake. The key
question of what to do when a teacher can’t articulate their own cost function
is taken up in the next section.

Summary

In an important sense, recent theory and algorithms for imitation learning
formalize a simple lesson: one cannot learn to drive a car simply by watching
someone else do it. Instead, feedback is essential – we must try to drive and
receive instruction that corrects our mistakes.

Crucially, this general approach is largely agnostic to the underlying
supervised learning approach. It is an interactive reduction to supervised
learning methods. Formal results are only known for settings (like kernel
machines, Gaussian processes, and linear predictors) where no-regret al-
gorithms are known. But empirical evidence suggests that this approach is
remarkably effective even when this condition doesn’t formally hold, since
many learning algorithms are actually both stable and good predictors.

Finally, it is important to note that all discussion here centered on learning

http://robotwhisperer.org/bird-muri/
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mappings directly from observations to controls without considering state-
estimators (e.g. filters.) However, there is no reason one can not nor should
not learn to imitate in belief space– that is learn mapping from the output of
a filter (e.g. a best estimate of the underlying world state) to decisions. In
practice, this is almost certainly necessary to achieve high performance; such
approaches fall under the same general approach described here as we can
consider the filter as simply a part of the environment and the filter output
as a new, generalized observation.

6.2 Decisions are Purposeful: Inverse Optimal Control

Figure 6.2.1: An image of the
DARPA UPI “Crusher” robot
autonomously crossing rough
off-road terrain. It is difficult
to manually engineer the con-
nection between perception and
planning. Imitation learning
techniques make it possible to
automate this process. Further
examples of the vehicle travers-
ing rough terrain from temper-
ate woodlands, to marshes, to
dense vegetation, to mock-up
urban environments all under
autonomous control can be seen
here and here.

Imitation learning is fundamentally different then classical supervised
learning in another sense. For instance, consider the problem of navigating
through very rough outdoor terrain – a major focus of robotics research
for decades. Figure 6.2.1 shows Crusher, an autonomous robot that was
developed as part of a DARPA fundamental research project into outdoor
robotics. Crusher traversed thousands of kilometers of diverse, rough, terrain
with minimal human intervention over years of field testing. In contrast to
many other outdoor navigation efforts, it typically travelled from 0.5 to 10

kilometers between human provided waypoints. All decisions along the
way were made based on information from its own perception system and
(optionally) overhead maps (e.g. images collected from mapping companies
like those used in Google Maps).

A reactive controller is unlikely to make any meaningful progress towards
a goal in this domain; it is difficult to imagine training a simple supervised
learning method to accomplish this complex task. The robot must instead
execute a long, coherent sequence of decisions in order to achieve its goal.
This requires a sense of planning – and of replanning as new perceptual
information becomes available – to achieve good performance.

To adapt to imitation learning to this setting, it is valuable to consider
the architectures that roboticists have created to achieve intelligent and
deliberative navigation. Since the pioneering projects in off-road navigation
[Hebert, 1997], effective robot navigation has relied on an optimal control or
replanning architecture to structure decision making. This architecture has
been replicated and refined throughout the field of robotics [Zucker et al.,

http://lairlab.org/wp-content/uploads/2009/10/UPI_Drum08_Composite.mpg
http://lairlab.org/wp-content/uploads/2009/10/Somerset07_Woods_Short.mpg
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2011, Urmson et al., 2008, Wellington and Stentz, 2004, Leonard et al., 2008,
Jackel et al., 2006, Bachrach et al., 2009] and is currently used in the most
advanced autonomous navigation systems.

Figure 6.2.2: Components of
a robot architecture: Sensors
(LADAR, cameras) feed a per-
ception system that computes
a rich set of features (left side)
developed in the computer
vision and robotics fields.
Depicted features include es-
timates of color and texture,
estimated depth, and shape
descriptors of a LADAR point
cloud. Features that are not
depicted here include esti-
mates of terrain slope, semantic
labels (“rock”), and other fea-
ture descriptors that can be
assigned a location in a 2D grid
map. These features are then
massaged into an estimate of
“traversability” – a scalar value
that indicates how difficult it is
for the robot to travel across the
location on the map.

Figure 6.2.2 shows a diagram of such a robot architecture. Sensors
(LADAR, cameras) feed a perception system that computes a rich set of
features (left side) developed in the computer vision and robotics fields. Fea-
tures that are shown in Figure 6.2.2 include color, texture, estimated depth,
and shape descriptors of a LADAR point cloud. Features that aren’t shown
in the diagram include estimates of terrain slope, presence of semantic cat-
egories (“rock”), and many other feature descriptors that can be assigned a
location in a 2D grid map. These features are then massaged into an estimate
of “traversability” – a single scalar value that that indicates how difficult it is
for the robot to travel across the location on the map. This value is included
in a “cost map” for each state of the robot. The final decisions of the robot
represent steps along a minimum cost plan from the robot’s current loca-
tion to a goal state. The robot executes a small part of the current plan at
each time instant. As the robot moves, the perception system provides up-
dates about the terrain it is crossing. The cost map is then updated with new
traversibility values and a new plan is generated.

Real implementations, of course, have much richer spaces of states then
simply a discretization of geometric locations of the robot center. Almost
inevitably, they contain a hierarchy of planning layers that capture a state-
space description of the robot at higher and higher fidelities as they consider
shorter time-scales. [Zucker et al., 2011] The diagram in Figure 6.2.2 never-
theless captures the essential behavior of many such systems and is often
exactly the behavior of the coarsest levels of such a hierarchy.

From the point of view of this architecture, only one role exists for imita-
tion learning. Perception computes features that describe the environment;
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the output control is always the prefix of the currently believed-to-be-optimal
plan. The learning algorithm then must transform the perceptual description
(a feature vector) of each state into a scalar cost value that the robot’s planner
uses to compute optimal trajectories.

Perhaps surprisingly, costing is one of the most difficult tasks in au-
tonomous navigation. As documented in [Silver, 2010], this single piece of
code required the largest number of changes and demanded the most en-
gineering effort. The entire behavior of the robot depends on this module
working correctly. Moreover, nearly all changes to the software end up re-
quiring either validation or modification of the costing infrastructure. If a
sensor changes or the perception system develops or refines features, the
costing mechanism must be updated. If the planner changes – for instance by
C-space expanding obstacles– the costing system must change. Tuning and
validating such changes demands a tremendous amount of time and effort.

However, the robot can use imitation to learn this cost-function mapping.
A teacher (that is, a human expert driver) drives the robot between way-
points through a representative stretch of complex terrain. We can then set
up a problem of Inverse Optimal Control: that is, we attempt to find a cost
function that maps perception features to a scalar cost signal so that the
teacher’s driving pattern appears to be optimal.

Nathan Ratliff formulated the problem of learning such a cost function
as an application of structured prediction and demonstrated that very simple
sub-gradient based algorithms are remarkably effective at solving it. 13 13 In fact, surprisingly such sub-gradient

methods are actually the best known
algorithms for solving large support
vector machine and more general struc-
tured margin problems in a follow-on
paper. These techniques are now the
de facto standard and have been im-
plemented in a wide range of libraries
[Agarwal et al., 2014].

Inverse Optimal Control (IOC) is a rich and fascinating subject that dates
back to Kalman’s work on the Linear-Quadratic-Regulator problem. Kalman
[Kalman, 1964] asked (and answered) a natural question: given a linear
controller or policy, is there a cost function that makes it optimal for a given
Single-Input Single-Output plant?14 Boyd [Boyd et al., 1994] provided a

14 Amusingly, while Kalman’s work
was critical in advancing the use of
state-space techniques for control, his
solution to the IOC problem was rooted
fundamentally in frequency domain
techniques.

simple convex programming formulation for the multi-input, multi-output
linear-quadratic problem.

Only recently, however, has Inverse Optimal Control become an engineer-
ing tool for designing intelligent systems. The recent work in the machine
learning on this area [Ng and Russell, 2000, Abbeel and Ng, 2004, Ratliff
et al., 2009c, Ziebart et al., 2008a, 2010] can be summarized as providing
several advances over the early contributions:

Figure 6.2.3: Iterations of the
LEARCH algorithm. See the
main text for a description of
how this algorithm modifies its
estimate of a cost function by
mapping features of a state to a
scalar traversability score.

(1) Enabling a cost function to be derived (at least in principle) for es-
sentially arbitrary stochastic control problems using convex optimization
techniques – any problem that can be formulated as a Markov Decision
Problem.

(2) Requiring a weak notion of access to the purported optimal controller.
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Figure 6.2.4: A demonstra-
tion of the Learning to Search
(LEARCH) algorithm applied
to provide automated inter-
pretation in traversability cost
(Bottom) of satellite imagery
(Top) for use in outdoor navi-
gation. Brighter pixels indicate
a higher traversability cost on
a logarithmic scale. From left
to right illustrates progression
of the algorithm, where we
see the current optimal plan
(green) progressively captures
more of the demonstration (red)
correctly.

No closed form description of the controller needs to exist, just access to
example demonstrations.

(3) Statistical guarantees on the number of samples required to achieve
good predictive performance and even stronger results in the online or no-
regret setting that requires no probabilistic assumptions at all.

(4) Robustness to imperfect or near-optimal behavior and generaliza-
tions to probabilistically predict the behavior of such approximately optimal
agents.

(5) Some algorithms further require only access to an oracle that can solve
the optimal control problem with a proposed cost function a modest number
of times to address the inverse problem.

The central premise of IOC techniques for imitation learning is that struc-
turing a space of policies as approximately optimal solutions to a control
problem is a representation that enables effective deliberative action. More-
over, IOC methods rely on the observation that cost functions generalize
more broadly [Ng and Russell, 2000] then policies or value functions. Thus,
one should seek to learn and then plan with cost functions when possible,
and revert to directly learning values or policies only when it is too computa-
tionally difficult.

The Learning To Search (LEARCH) Algorithm. The key algorithmic ideas
for modern IOC algorithms statistical guarantees can be understood in the
framework of convex optimization of an objective function that stands as
a surrogate for correctly predicting the plan or policy that the teacher will
follow. As such, many of the original approaches were formulated in terms
of large quadratic programs [Ratliff et al., 2006] or Linear-Matrix Inequalities
[Boyd et al., 1994] and the resulting algorithms are somewhat opaque. How-
ever, more recent algorithms designed for solving large scale and non-linear
problems are quite natural and might be guessed without even appreciating
they are solving a well-defined optimization problem.

Consider, for instance, the Learning to Search (LEARCH) approach of
[Ratliff et al., 2009c] in the context of rough-terrain outdoor navigation dis-
cussed above. We may step through the algorithm on a cartoon example
to see why it might work. We first consider a path driven by teacher from
a start point to a goal point, then imagine a simple planning problem on a
discretized grid of states that the robot can occupy. Every iteration of the
algorithm consists of the following: (a) computing the current best optimal
plan/policy; (b) identifying where the plan and teacher disagree and creating
a data set consisting of features and the direction in which we should modify
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the costs; (c) using a supervised learning algorithm to turn that data set into
a simple predictor of the direction to modify costs; and (d) computing a cost
function as a (weighted) sum of the learned predictors.

1 # Take a sequence of MDPS and demonstrations [Mi , ξi )]
N
i=1 where MDP M i s a s t o c h a s t i c planning problems

c o n s i s t i n g of s t a t e s , ac t ions , and a t r a n s i t i o n funct ion used f o r planning ,
2 # ( opt iona l ) l o s s f u n c t i o n s li : s t a t e , ac t ion−>R t h a t measures d e v ia t i o n s from the demonstrated plan ,

3 # f e a t u r e funct ion f : s t a t e , a c t i o n −> Rd t h a t d e s c r i b e s s t a t e s in terms of f e a t u r e s meaningful f o r
c o s t

4

5 def LEARCH({(Mi , ξi )}N
i=1 , f , {li}N

i=1 = 0 ) :

6 s0 = 0 # I n i t i a l i z e ( log )−c o s t funct ion , s0 : Rd → R to zero
7 f o r t in range ( T ) : # run f o r T i t e r a t i o n s
8 D = [ ] # I n i t i a l i z e the data s e t to empty
9 f o r i in range (N) : # f o r each example in the data s e t

10 cl
i = est (Fi ) − lTi # Compute costmap with opt iona l l o s s augmentation

11 µ∗i = Plan (Mi , ci ) # f ind the r e s u l t i n g optimal plan µ∗i = argminµ cl
i µ , µ c o n s i s t e n t with Mi

12 # µ∗ ’ s counts the time spent in s t a t e / a c t i o n s p a i r s under the plan−−
13 # f o r d e t e r m i n i s t i c MDPS t h i s i s simply an i n d i c a t o r of whether the optimal plan
14 # v i s i t s t h a t edge in the planning graph
15 µi = [ ξi . count ( ( s , a ) ) f o r ( s , a ) in Mi ] #compute s t a t e s−a c t i o n s in demonstration
16 # Generate p o s i t i v e and negat ive t r a i n i n g examples :
17 Di = [ ( fi (s, a) , s ign ( µ∗i

sa − µi
sa ) , |µ∗i

sa − µi
sa | ) f o r ( s , a ) in Mi ]

18 # i f |µ∗i
sa − µi

sa | = 0 f o r a s t a t e−a c t i o n we can simply not generate t h a t point

19 D. append ( Di )

20 ht = Learn (D) # Train a r e g r e s s o r ( or c l a s s i f i e r ) ht : Rd−>R on the r e s u l t i n g weighted data s e t
21 st+1 = st + αt ht # Update the ( log ) hypothesis c o s t funct ion
22 re turn exp (sT )

LEARCH Algorithm Pseudo-code

Theory and Guarantees. At its heart, the problem of correctly identifying
a teacher’s reward function is ill-posed. First, it is unreasonable to believe
the teacher is truly an optimal controller for some simple Markov Decision
Process that describes the world. Second, given a single behavior, there are
generally infinitely many reward functions that lead to the same behavior
and are thus unidentifiable. [Abbeel and Ng, 2004]

There are thus two commonly used notions of successful IOC used in
machine learning. The first (originated by Abbeel and Ng [Abbeel and Ng,
2004]) considers a class of reward functions that are linear in a set of features
that describe states. Our goal then is to ensure that whatever behavior is
learned by imitation achieves the same reward as the teacher even when the
reward function itself cannot be identified. The second (typified by Maximum
Margin Planning [Ratliff et al., 2006, 2009c]) is agnostic to whether the teacher
is actually an optimal controller or even cares about a reward function. In-
stead, it quantifies a notion of successful imitation – for instance, agreement
with the trajectory taken by the teacher – and then attempts to optimize that
notion of agreement with the teacher.

These notions are surprisingly closely tied. Methods like Maximum Margin
Planning that ensure successful agnostic imitation also can provide guar-
antees with respect to the teacher’s reward function (if it exists!).[Syed and
Schapire, 2007] Conversely, while methods like the Maximum (Causal) En-
tropy approach of [Ziebart et al., 2008a], which we cover extensively in the
next chapter, are also designed to achieve the same reward as a teacher, they
can also be understood in a dual formulation as maximizing the likelihood
of the teacher’s plans under a robust statistical model of the agent’s behav-
ior. [Ziebart et al., 2010, 2013] Moreover, some methods, like that of [Ziebart
et al., 2010], have yet another interpretation in terms of optimal control per-
turbed by certain shocks that are not visible to the learner. [Rust, 1994]
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Figure 6.2.5: (Left) LittleDog
platform crossing a terrain.
(Right) Planning system that
relies on a learning approach to
cost function generation. Each
color represents a different foot
and arrows indicate the paren-
t/child relationship between
footsteps under consideration.
[Zucker et al., 2011]

IOC in other Domains The notion of learning such deliberative strategies by
tuning the cost function of a planner isn’t unique to outdoor navigation– it
arises anywhere long horizon plans are needed and relatively complicated
features exist to describe the state space. [Ratliff et al., 2006, Zucker et al.,
2011] developed a technique for learning costs (and a hierarchy of heuris-
tics) by demonstration (see Figure 1) for a rough terrain legged locomotion
planner. In essence, quasi-static locomotion is treated as discrete planning
problem of carefully arranging footfalls. A complex cost function that takes
into account the terrain at each individual foot as well as features of the en-
tire robot pose that are correlated with good foot placements (for instance,
the size of the polygon of support of the robot [Zucker et al., 2011]) was
learned from expert demonstration. Multiple research groups have since
embraced similar techniques [Kalakrishnan et al., 2011, Kolter et al., 2007].

Purposeful Prediction. Often, behavior demonstrated is only approximately
optimal or may appear to have some non-determinism in its decisions. This
can be understood in two ways: people are not in fact “optimal” in their
decision-making for any reasonable definition of that word, and even more
so, the world those people inhabit is not the simple Markov Decision Process
we use as our model in Inverse Optimal Control techniques. 15 Recent IOC 15 I.e., the map is not the terrain.
learning techniques manage such uncertainty and moreover can make prob-
abilistic predictions of what people are likely to do even in such imperfect
models.

The ability to imitate a person’s imperfect but deliberative behavior im-
plies the ability to predict it. In Figure 6.2.6 we see examples of Activity
Forecasting: predicting people’s likely trajectories in novel scenes via com-
puter vision and inverse optimal control by learning what they are approxi-
mately optimizing in their decision making. [Kitani et al., 2012]

For instance, consider the problem of predicting the likely routes that a
driver might take to travel from home to a store. We can consider a graph
that describes the road network with nodes corresponding to road segments
and edges between road segments that connect. Each road segment is an-
notated with a rich set of features x (dozens or hundreds) that describe it
[Ziebart et al., 2008b] – such as expected travel times at the speed limit, the
grade of the road, the toll cost of that segment, the number of lanes, whether
a church is located along the road, or the presence of a guarded left turn.

The approach of [Ziebart et al., 2008a] efficiently learns a function c(x)
that linearly combines such features to best fit a distribution over trajec-
tories ψ taken by the driver according to the maximum entropy model
p(ψ) ∝ exp(−V(ψ)), where V is the total cost of the trajectory, ∑x∈ψ c(x).
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Figure 6.2.6: (Left) Automatic
semantic classification of a scene
via machine learning[Munoz et al.,
2010, Miksik et al., 2013]. (Right)
Activity forecasting combines se-
mantic perception techniques to
identify the actors and object types
in a scene with the probabilistic
formulation of inverse optimal
control to predict an actor’s future
destinations and likely trajecto-
ries based on partial trajectories.
Each image depicts the predicted
distribution of future states for a
pedestrian. The absence of color
implies very low probability, blue
implies low probability, and yellow
to red higher. Only a few potential
goals are shown, and only with a
single observation (predictions im-
prove as more of the path is seen),
to simplify the figure. [Kitani et al.,
2012, Ziebart et al., 2013, 2008a]

When these models are combined with a prior distribution over potential
destinations, they learn both a driver’s implicit preferences (for example,
going out of the way to avoid both unguarded left turns and expensive tolls)
and provide a estimate of a drivers destination and likely future routes after
beginning a trip. The use of the maximum entropy formulation ensures a
strong guarantee on the predictions– no other approach to forecasting an
agent’s actions that uses the same information about features [Ziebart et al.,
2013] can ensure smaller predictive loss.

This approach establishes the deep connection between probability theory,
and particularly the Maximum Entropy Method, and inverse optimal control,
where previously, these were understood as disparate techniques for model-
ing decision-making. [Ziebart et al., 2008a] This thread of work culminated
in a new principle for the statistical prediction of interacting systems (e.g.
a driver and the world, multiple agents playing a dynamic game) [Ziebart
et al., 2010, 2013]. 16

16 Such models can be understood as
a natural generalization of Conditional
Random Fields. They generalize the
common supervised learning models by
considering two interacting stochastic
processes (both decision maker and
the environment can be stochastic pro-
cesses, with the environment assumed
to be known) and arbitrary (and po-
tentially infinite) length sequences of
decisions. [Ziebart et al., 2010, 2013].

Similar techniques can be applied to predict where people are likely to
walk in a complex visual scene. For instance, such methods could recognize
cars and sidewalks in a scene and reason that a person will climb over a car
if strictly necessary to reach a goal, but will preferentially take advantage of
a sidewalk where available. [Kitani et al., 2012] Moreover, such techniques
have been applied to aid robot navigation and predict pedestrian behavior.
[Ziebart et al., 2009, Kretzschmar et al., 2014]

Work by [Baker et al., 2009] demonstrates people reason about others as
deliberative agents as well. This inverse planning framework elegantly cap-
tures aspects of the human “Theory of Mind.” Work in operations research
and econometrics, particularly by Rust [Rust, 1992, 1994], derives predictive
distributions by developing a framework for learning cost functions and
predictive stochastic policies for agents acting according to a Markov De-
cision Process (MDP). Intriguingly, the same policy structure and dynamic
programming algorithms derived from a maximum entropy formulation are
developed from considering an economist with only partial access to the pre-
diction problem and including “shocks” in a model of what would otherwise
be optimal behavior. These close connections between operations research,
control theory and machine learning deserve much deeper investigation.

6.3 Structured Prediction as Imitation Learning

At first blush, it seems counter-productive to phrase a supervised learning
problem as one of imitation learning. Isn’t the point of this article that imita-
tion learning is a harder problem then that of supervised learning? However,
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the relationship between the two is more subtle than this simple picture sug-
gests. Within supervised learning, we often consider problems of structured
prediction where the goal is to make a set of inter-related predictions – for
instance, to semantically label all of the pixels within an image (e.g., Figure
6.2.6) or to turn a sentence into a parse tree. [Daumé III et al., 2009] suggests
that a natural way to think about structured prediction is to consider it as
predicting a sequence of decisions – e.g. what to label a particular pixel given
current guesses of labels – and moreover that the expert we are imitating is
simply the ground truth. 17 17 Hal Daume at a NIPS workshop first

clearly expressed to me the notion that
we should often think of supervised
learning problems as being imitation
learning problems in disguise. This
viewpoint has certainly been addressed
by others – John Langford has par-
ticularly championed the notion that
complex prediction problems should
be thought of in terms of reductions to
simpler problems.

From this viewpoint, structured prediction problems are merely de-
generate versions of imitation learning problems, where the teacher can
be specified algorithmically based on training data and the dynamics of
the environment are particularly simple. When viewed through this lens,
structured prediction problems suffer the same difficulties as problems of
imitation learning. Predictions of some random variables (e.g., pixel classes)
influence future predictions of other pixels and a naive training of such an
architecture leads to disastrous compounding of errors.

For instance, consider the inference machine approach of [Munoz et al.,
2010, Ross et al., 2011b]. The central idea is to consider labeling an image
or point cloud sequentially in a pattern mimicking that of highly effective
graphical model inference algorithms like mean-field or belief-propagation. We
iteratively pass through each pixel and label it using a combination of (a)
features that describe that particular visual element (e.g. texture, color) as
well as (b) the currently predicted labels of visual elements that are nearby.
The use of such nearby elements for predictions enables effective contextual
reasoning. It’s easier to distinguish a tree trunk from a telephone pole if we
know that the material located above it is vegetation. Such contextual rea-
soning has traditionally been approached through the lens of probabilistic
graphical models. We first learn a templated parameterized probabilistic
model, then use approximate inference techniques to infer random variables
in that model. The imitation learning approach makes the inference proce-
dure itself the model. 18 18 It is natural to view the inference

machines in the language of deep
modular neural networks [LeCun et al.,
1998, Bengio, 2009] – an inference
machine is a very deep set of repeated
predictions about a particular visual
element or other random variable.
An alternative to the iterative training
procedures espoused here includes a
direct backpropagation of errors of final
predictions made about such nodes.
Interestingly, however, such results
limit our prediction algorithms (no
random forests!) and may not always
be an optimal approach. Investigating
when backpropagation can effectively
tune the parameters of an inference
machine remains an important subject
for research.

Shih-En Wei, Varun Ramakrishna,
Takeo Kanade, and Yaser Sheikh.
Convolutional pose machines. In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition,
pages 4724–4732, 2016

Such techniques— and more generally, applying methods like DAG-
Ger to structured prediction– have been demonstrated to provide state-of-
the-art predictive performance and speed of inference on a wide range of
structured prediction tasks. These include examples from predicting seman-
tic labels for images [Munoz et al., 2010], identifying human poses in images
and video [Ramakrishna et al., 2014], summarizing documents with the
SCP algorithm [Ross et al., 2013c], and a broad range of Natural Language
Processing Tasks [Daumé III et al., 2009, He et al., 2012]. 19

19 Videos of such inference approaches
approaches can be found at the Infer-
ence Machine Website.

6.4 What’s Next?

Only in the past decade has imitation learning come into its own as a prob-
lem distinct – and distinctly important – from the classical ones of reinforce-
ment and supervised learning. The structure of the problem gives us far
more purchase then the general reinforcement learning (RL) problem. But it
also acknowledges that learning may actually affect the world and that the
classic assumptions of supervised learning will lead to poor performance
and compounding errors.

http://www.cs.cmu.edu/~dmunoz/projects/infer_machine.html
http://www.cs.cmu.edu/~dmunoz/projects/infer_machine.html
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Apprenticeship: From Imitation to Reinforcement

An important next step is moving from pure imitation to apprenticeship20, 20 Borrowing this phrase from Pieter
Abbeel, who uses it to refer to systems
that combine imitation and reinforce-
ment learning.

which leverages user demonstration but optimizes performance on an al-
ternate metric. Many examples in the literature consider where it can have
significant benefits. For instance, [Nechyba and Bagnell, 1999] demonstrates
a learned speed control for a simulated driving task that is improved by an
RL gradient descent procedure that ensures good performance while at-
tempting to stay as close as possible to demonstration. Similarly, the works
of [Atkeson and Schaal, 1997], [Kober and Peters, 2010] and [Coates et al.,
2009] use exactly same kind of benefits to achieve impressive performance.
Such approaches are even more important when the learning cannot be
interactive– for instance, when learning by watching a video.

Interestingly, theoretical results suggest an enormous practical benefit for
learning from an expert demonstrator – but perhaps not in the way typically
considered. The theories of Policy Search by Dynamic Programming [?],
Conservative Policy Iteration [Kakade and Langford, 2002], and No-Regret
Policy Iteration [Ross and Bagnell, 2014] show that the key to making rein-
forcement learning easier is to identify the distribution of states that a good
policy spends time in (the so-called baseline measure of [?]). Access to such a
distribution makes the problem of a learning an optimal memory-less policy
in a Partially Observed MDP a polynomial-time problem. It also effectively
makes the sample complexity of learning into a policy with generative model
access to a large MDP polynomial in the horizon of the problem.

Such results, however, show no significant benefit for observing what
actions an expert demonstrator might choose – the benefit of this seems
secondary to the benefit of knowing what states are important to focus on.
Understanding practically and theoretically how we can get the best of
imitation and reinforcement learning will be a major area of future research.

Extending Inverse Optimal Control for Imitation Learning.

Much recent work has focused on models for which the optimal control
problem itself can only be approximately solved. 21

21 [Ziebart et al., 2012] and [Dragan
and Srinivasa, 2012] and [Levine and
Koltun, 2012] consider locally quadratic
approximation of the maximum en-
tropy inference problem. [Huang et al.,
2015] has developed a variant of the
maximum entropy IOC that relies on a
combination of function approximation
of the log-partition function and sam-
pling to estimate the gradient. [Ratliff
et al., 2009a] blends the advantages of
IOC-based methods with methods that
directly learn to predict actions.

Such methods and combinations of methods seem likely to dramatically
increase the applicability of this rich class of predictive models and proce-
dures for inferring reward functions.

Putting it together

Perhaps surprisingly, existing techniques rarely consider both aspects of imi-
tation learning I have discussed in this paper: they tend to focus either on the
problem of compounding errors or the need for learning deliberative strate-
gies. As these problems are largely orthogonal, we expect future techniques
for imitation learning will address both issues simultaneously.



7
Moment Matching, GANs, and all that

Introduction

In this chapter we review Inverse Optimal Control from the Maximum En-
tropy perspective and connect these to the general goal of learning proba-
bility distributions from examples. This chapter establishes the key role of
both moment matching/integral probability metrics and a game theoretic
view of learning behavior. This viewpoint allows us to connect IOC and the
Maximum Entropy Principle more broadly to a family of generative models
known as Generative Adversarial Networks. Efficiency is achieved for con-
tinuous control problems via a Laplace approximation and techniques are
studied to learn costs and find anomalies with this approximation.

This chapter extends the previous one by considering methods for learn-
ing cost functions from human demonstration that highlight the intimate
connections between probabilistic inference and optimal control. Moreover,
the approach to Inverse Optimal Control embraced in this chapter estab-
lishes a connection to recent development in Generative Adversarial Networks,
optimal transport, and the general approach of moment matching.

7.1 Decisions are Purposeful: Inverse Optimal Control

7.2 IOC as Moment Matching

Let us consider the problem of matching such expert driver behavior. What
would success mean here? A reasonable requirement might be that:

p(ξ|Γ) ≈ p̃(ξ|Γ)
where we use ξ to represent a trajectory the expert might take, Γ to repre-
sent the general context of the planning problem including environment and
sensor data at a particular time-step, we use p to represent our model dis-
tribution and we use p̃ to represent the empirical distribution of examples.

I’ll ignore here the philosophical quan-
daries around the demonstrations
coming from a probability distribution.
They don’t. It’s simpler to imagine
they do for the purposes of this work
and defer a generalization to regret
and other non-probabilistic notions of
performance to another time.

A weaker condition that we’ll work with here is that,

E ˜p(Γ)[p(ξ|Γ)] ≈ E ˜p(Γ)[ p̃(ξ|Γ)]
Throughout the remainder of this work, we’ll largely suppress the depen-
dence on the context Γ. Near the end, we’ll consider stronger notions than
the average case performance.
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How, then, should we make it so that p(ξ) ≈ q(ξ) (where in general q
is a distribution, often the empirical one p̃) in a manner that is empirically
measurable, and where we only have sample access to q (and might prefer
for engineering reasons to only require sample access to p)? Let us consider
first a finite set of cost functions F that measure, according to some notion,
how good a trajectory is. We might then require that the demonstrations and
the learned model achieve the same costs for each of the cost functions: 1 1 We might prefer, instead that the

learned model has a lower cost,
E ˜p(Γ)[p(ξ|Γ)] ≤ E ˜p(Γ)[ p̃(ξ|Γ)]. This
is also easy to implement, (and covered
in generality in ) but if F is closed
under negation ( f ∈ F ⇒ − f ∈ F ) then
meeting the inequality immediately
implies we meet the equality.

K. Waugh, B. D. Ziebart, and J. A.
Bagnell. Computational rationalization:
The inverse equilibrium problem. In
Proceedings of the International Conference
on Machine Learning, June 2011

∀ f ∈ F , Ep[ f ] = Eq[ f ] (7.2.1)

Moment matching

This constraint, Equation 7.2.1, is known as a moment matching constraint.
We note the important property that moment matching implies that for the
much broader class of cost functions composed of linear combinations of F ,
Flin = {∑i λi fi| f ∈ F}, we also have

∀ f ∈ Flin, Ep[ f ] = Eq[ f ] (7.2.2)

That is, moment matching under a set of cost functions, also implies match-
ing all linear combination of such moments.

Prove it in the margin.
Classes of moments. The classical moments are the monomials, e.g.

x2
1x4

3x5. Classic results, perhaps unsurprisingly, indicate matching all mono-
mial moments implies convergence in distribution. Matching all bounded
functions implies that the total variation distance between distributions is 0.
2. A more classic set of functions relevant to robot motion planning including 2 Bharath K. Sriperumbudur, Arthur

Gretton, Kenji Fukumizu, Gert R. G.
Lanckriet, and Bernhard Schölkopf.
A note on integral probability metrics
and $\phi$-divergences. 2009. URL
http://arxiv.org/abs/0901.2698

quadratic hinges on an individual variable 3 max2(0, xi), or generalized to

3 N. Ratliff, M. Zucker, J. A. Bagnell,
and S. Srinivasa. Chomp: Gradient
optimization techniques for efficient
motion planning. In ICRA, 2009b

max2(0, g(x, Γ)) for a class of functions g.

From moments to metric

We can allow slack in the notion of moment matching and provide a distance
metric (divergence) between probability distributions. We denote by

We consider here the case that the class
F is symmetric and I blithely ignore the
difference between a supremum and a
maximum.

DF (p, q) = max f∈FEp[ f ]− Eq[ f ] (7.2.3)

the Moment Matching Metric also known as the Integral Probability Metric
associated with F . That is, we measure the difference between distributions
by considering the worst-case gap between them in the class of cost functions
F .

If the function class is a Reproducing Kernel Hilbert Space of fixed norm,
this metric is known as Maximum Mean Discrepancy 4, while if the class of 4 Bharath K. Sriperumbudur, Arthur

Gretton, Kenji Fukumizu, Gert R. G.
Lanckriet, and Bernhard Schölkopf.
A note on integral probability metrics
and $\phi$-divergences. 2009. URL
http://arxiv.org/abs/0901.2698

functions is all 1-Lipshitz continuous ones, this metric is equivalent to the
earth mover distance.

Measuring by samples

This definition of divergence between distributions is useful both because
it captures the important distinctions in a concrete notion of cost, but also
because expectations can be measured by only observing samples. If we
have, for instance, a single f to consider in our cost function space, the strong
law implies immediately 1

N ∑i f (ξi) → Ep[ f ] for paths drawn from p(ξ),

http://arxiv.org/abs/0901.2698
http://arxiv.org/abs/0901.2698
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and we can bound the error in this estimate with high probability, typically
as a rate of ε = O( 1√

N
). Intuitively this follows from the observation that

the variance of a sum of i.i.d. random variables is linear in the number of
samples and hence that the standard deviation of an average of random
variables must decrease as O( 1√

N
).

For broad classes of cost functions we are basically solving a classical
supervised learning problem: finding the function f that maximally distin-
guishes between p and q. If we take a gradient of equation 7.2.3 with respect
to the function f and then take a random instance, we find an (unbiased)
estimate of the gradient is:

f (ξp)k(ξp, ·)− f (ξq)k(ξq, ·)

in an RKHS— replace k with a delta function or an indicator function as
appropriate for the space), where f is the element of F that is the current
linearization point.

Entropy Regularization

In general, we can only approximately estimate moments from samples.
For a finite number of moments, there will be many distributions that are
consistent with the moments known. A classic approach to breaking this
ambiguity is the maximum entropy method that prescribes assigning the
highest entropy distribution consistent with the known moment constraints.
That are many justifications of this principle (see 5) that are more-or-less 5 E. T. Jaynes. Probability theory: The

logic of science. Cambridge Uni-
versity Press, 2003; and Peter D.
Grunwald and A. Philip Dawid.
Game theory, maximum entropy,
minimum discrepancy and robust
bayesian decision theory, 2004. URL
http://arxiv.org/abs/math/0410076

compelling depending on applications. Such regularization has proven

Interestingly, such entropic regulariza-
tion occurs in purely computational
settings as well from AdaBoost to
Sinkhorn iterations where it break am-
biguities and leads to fast, numerically
stable algorithms.

critical in inverse optimal control applications. The probabilistic viewpoint
leads to a well-defined answer to modeling imperfect “optimal” behavior
while managing the ill-posedness of equally good solutions.

The result sets up an optimization problem:

maxp H[p(ξ)] (7.2.4)

s.t.∀ f ∈ F , (7.2.5)

Ep[ f (ξ)] = Eq[ f (ξ)] (7.2.6)

where q is typically the empirical distribution over observed paths, p̃.
Is it easy to relax the equality above with slack via the moment matching

metric,
max f∈FEp[ f ]− Eq[ f ] ≤ ε

We defer that now, except to note that slack in the primal, MaxEnt problem,
corresponds to regularization in the dual parameters – a beautiful result due
to Dudik et al. [2004]. It’s interesting to note that the duality

viewpoint suggests that we should
often actually measure a divergence
not by its maximum over F , but by
the L2 norm of the violations. I’m
unaware of that being explored in the
probabilistic literature, but it is much
more natural notion of approximate
moment matching than IPMs for many
applications.

The resulting Lagrangian optimization problem is a game between two
players. A generator p(ξ) that computes the best distribution, and a cost
function (weighting) λ attempts to discriminate between the two distribu-
tions. Some techniques, like GANs, attempt to solve the problem by a saddle
point finding approach. This is a potentially powerful approach for IOC 6.

6 Jonathan Ho and Stefano Er-
mon. Generative adversarial im-
itation learning. 2016. URL
http://arxiv.org/abs/1606.03476

However, the industry standard, if you’ll oblige, is to solve for the optimal
generator p in closed form. Given a function class Flin that is closed under
linearity, we can conclude

p(ξ) =
exp(−cost(ξ))

Z
(7.2.7)

http://arxiv.org/abs/math/0410076
http://arxiv.org/abs/1606.03476
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where in the linear case for a set of features of a path φ(ξ), we have cost =

λTφ(ξ).
Given the form, the goal now is only to compute the cost function, or

equivalently it’s parameters (λ).
Derive this in the margin using Lagrange multipliers.

Markov structure

We being by considering a problem with structure defined by cost f (ξ) =

∑t cost(xt, ut) and markov transition dynamics xt+1 = h(xt, ut). For the
linear case we write such costs as λTφ(x, u), for a set of feature functions φ.
This structure makes it (exponentially in T) more efficient to find solutions
and corresponds to the classical structure of optimal control. The general case of stochastic dynamics

is handled in Ziebart et al. [2013],
and requires more careful reasoning
about causal entropy, but the resulting
algorithms are largely identical.

We note in all cases there is nothing essentially different about making
each weight or cost a function of t and that this could be useful for receding
horizon control where our uncertainty about the future grows rapidly. 7

7 Having variable costs as a function
of time (at least without exponential
damping) can, however, lead to incon-
sistent decision making. For instance,
an agent might always choose to defer
expensive decisions to the future, where
costs are lower, as during training, "the
future never arrives". This is closely
related to the problems of off-policy
imitation described in the previous
chapter.

If we want to compute derivatives with respect to λ, we should find
the optimal generator p and then eliminate to form a dual optimization
depending only on the costs (i.e. only on the variable λ rather than p). A
quick computation of the derivatives with respect to λ after eliminating p
gives us:

∑
t

Ep[φ(xt, ut)]− Eq[φ(xt, ut)]

where Eq[φ(xt, ut)] is typically a constant estimated by observed data (i.e.
q = p̃). Optimization then boils down to computing expectations under
the model efficiently Ep[φ(xt, ut)]. We can do this via a dynamic program-
ming algorithm (effectively inference in a random field) which is precisely
equivalent to classical value iteration with the min replaced by log ∑ exp, aka
softmin. The forward pass can then be computed analytically or via samples
by noting

p(ut|xt) ∝ exp(−Qt(xt, ut))

where Qt(xt, ut) = cost(xt, ut)+Vt+1(xt+1) and Vt+1(xt+1) = softminuQt+1(st+1, u).
This can then be pushed through forward dynamics. In general, we can view
the backwards pass as transforming an undirected graphical model into a
directed one, and then employing an ancestral sampling procedure (or exact
forward integration) to compute expectations.

This recursive definition enables an optimal policy computation for a
tabular model and suggests methods to enable approximation in the non-
tabular case.

Scaling to continuous trajectory generation

We’re typically interested in high dimensional continuous control problems.
Some powerful tools exist here for inference including Monte-Carlo meth-
ods and Vernaza’s value-function symmetry method8. The simplest version 8 P. Vernaza and D. D. Lee. Efficient

dynamic programming for high-
dimensional, optimal motion planning
by spectral learning of approximate
value function symmetries. In IEEE
International Conference on Robotics and
Automation (ICRA), 2011

however is the Linear-Quadratic / Gaussian model. This was first developed
by 9 (following Ratliff’s thesis version of IOC for LQR). We can follow the

9 B. D. Ziebart, J. Andrew Bagnell, and
A. K. Dey. Modeling interaction via the
principle of maximum causal entropy.
In Proceedings of the 27th International
Conference on Machine Learning, 2010

development presented in Ziebart, or take an alternate approach of approxi-
mation. In particular, we can consider the Laplace approximation where we
find the most probable trajectory ξ∗ and a quadratic expansion about it to
compute approximate partition functions, entropy, variances, samples and
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expectations. Under linear dynamics and a quadratic cost function, the true
distribution on both actions p(ut|xt) and on states are Gaussian and thus the
approximation is actually exact.

In the absence of these, the technique is an approximation, albeit a pow-
erful one. The key idea is to leverage a family of techniques based on Differ-
ential Dynamic Programming 10 to compute efficiently the best (and thus most 10 D. H. Jacobson and D. Q. Mayne.

Differential Dynamic Programming.
Elsevier, 1970; C. G. Atkeson. Using
local trajectory optimizers to speed
up global optimization in dynamic
programming. In Advances in Neural
Information Processing Systems (NIPS),
1994; and Yuval Tassa, Tom Erez, and
Emanuel Todorov. Synthesis and
stabilization of complex behaviors
through online trajectory optimization.
In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference
on, pages 4906–4913. IEEE, 2012

probable) action as a policy ut|xt and the curvature in the action-value func-
tion as a function of u, denoted Quu. This quadratic approximation in value
(cost-to-go) provides a Gaussian approximation of action-selection which
enables both efficient inference and easing understanding.

Note crucially that such methods as DDP (and iLQR and variants) provide
a complete feedback policy and an estimate of the cost-to-go that depends
on the state we arrive in. Equivalently, in probabilistic terms, they provide a
sequence of ancestral conditional distributions rather than merely marginals.
11

11 This point turns out to be an impor-
tant difficulty in creating constraints
in LQR or in probabilistic inference
algorithms— in either case many
methods lose they key advantage
of a feedback policy and regress to
only optimization. LQR is not only
optimization– it’s a full policy. This
point is addressed further below.

We begin below by describing a Laplace approximation based sampler.
It assumes a differential dynamic programming procedure has already been
called that provides gain matrixes and control biases, as well as curvatures.
The notation here matches that used by Tassa et al. [2012].

1 # Take an i n i t i a l s t a t e x0 , a model of forward dynamics f : s t a t e , a c t i o n −> s t a t e ,
2 # a sequence [ ] of Quu curvature approximations ( c o n d i t i o n a l p a r t i t i o n f u n c t i o n s ) , and
3 # gain matr ices/v e c t o r s K, k computed via a D i f f e r e n t i a l Dynamic Programming
4 # method , and a maximum time T
5 def Sample ( x0 , f , Quu , K, k , T ) :
6 x = [ x0 ] # s t a t e sequence
7 u = [ ] # a c t i o n sequence
8 f o r t in range ( T ) :
9 π = Normal ( k [ t ] + K[ t ] x [ t ] , Quu ( t ) ^−1)

10 u . append ( Sample ( π ) )
11 x . append ( f ( x [ t ] , u [ t ] ) )
12 re turn ( x , u )

LQR forward sampler

We note however, that in the spirit of receding horizon, model-predictive
control, we can actually do better. Once we have begun sampling, we can re-
linearize and resolve the optimal control problem that results from arriving
at state x1. This suggests an O(T2) procedure which samples ancestrally and
recomputes the optimal gain matrices and curvatures as it advances. We
outline this in pseudo-code below.

1 # Take an i n i t i a l s t a t e x0 , a model of forward dynamics f : s t a t e , a c t i o n −> s t a t e ,
2 # a c o s t funct ion c o s t : s t a t e , a c t i o n −> R , a maximum time T ,
3 # and a procedure DDPSolve : f , cost , s t a t e , i n t e g e r −−> a tuple of
4 # ( [ gain Matrix K] , [ gain vec tor k ] , [ quadrat ic approximation of Q_uu] ) , each a time varying
5 # sequence computed via a D i f f e r e n t i a l Dynamic Programming method .
6 # I t re turns a s i n g l e sample t r a j e c t o r y of s t a t e s and c o n t r o l s .
7 def Sample ( x0 , f , cost , T , DDPSolve ) :
8 x = [ x0 ] # s t a t e sequence
9 u = [ ] # a c t i o n sequence

10 f o r t in range ( T ) :
11 ( k , K,Q) = DDPSolve ( f , cost , x [−1] , T ) # compute optimal gain matr ices
12 π = Normal ( k [ 0 ] + K[ 0 ] x [ 0 ] , Quu [0]^−1)
13 u . append ( Sample ( π ) )
14 x . append ( f ( x [ 0 ] , u [ 0 ] ) )
15 re turn ( x , u )

Re-linearized MPC LQR forward sampler

In the above procedure, care must be taken with passing around a con-
text Γ: the context should remain unchanged during the sampling and all
time-varying costs must be indexed according to the correct time, as the
DDPSolve() routine is unaware that the time-steps are changing in the outer
loop of the algorithm.
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Figure 7.2.1: Both images depict
sample trajectories drawn from
a Gaussian approximation, com-
puted via Differential Dynamic
Programming, of the maximum
entropy distribution for a an au-
tonomous vehicle. The left image
shows the naive Gaussian sampling
procedure. Note the expansion in
time at approximately O(

√
T) of

the lateral position of the vehicle.
The red boundaries shown, which
are expensive to violate, do not
impact the mode trajectory, and
therefore they do not affect the
Gaussian sampling approximation.
In the right figure, we explore the
use of a sampler that iteratively
re-linearizes and resolves after each
step in ancestral sampling from
x0. By contrast, we see two basins
(corresponding to lanes), and we
note the lateral position of the tra-
jectories is strongly influenced by
boundaries.

Learning cost functions from samples

We have already seen how a straightforward gradient can be computed
from the difference of Ep[φ] and its empirical version Ep̃[φ]. Let’s consider
expanding to a space of functions and learning using samples. We begin by
replacing λTφ(x, u) by cost(x, u) from a linear space of cost functions (that is,
closed under linear combination).

There are three general strategies for learning such cost functions, and
perhaps surprisingly, they are all actually closely linked. The first two can
be understood as generically gradient descent in a space of functions (1)
Boosting and (2) Kernel Gradient Descent, while the final one (3) parametric
gradient descent in a function class, is the older and at times most computa-
tionally efficient approach. 12 12

Kernel gradient descent is nearly
the same as boosting with a particular
class of weak learners, while in a
particularly important, infinite-width
limit, parametric gradient descent
on a deep, non-convex function class
behaves precisely as a kernel gradient
descent including convergence to
a global optimum and appropriate
regularization guarantees.

Arthur Jacot-Guillarmod, Franck
Gabriel, and Clement Hongler. Neural
tangent kernel: Convergence and
generalization in neural networks. In
S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances
in Neural Information Processing
Systems 31, pages 8580–8589.
Curran Associates, Inc., 2018.
URL http://papers.nips.cc/paper/

8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.

pdf

Taking the MaxEnt family p(ξ) ∝ exp−cost(ξ) and plugging it into the
maximum entropy problem Equation 7.2.4 yields a maximum likelihood
problem over the space of functions. 13 An unbiased estimate of that gradi-

13 Check it!

ent can be computed in approach (3) as

∇θcost(ξi)−∇θcost(ξsample) (7.2.8)

where ξi is a demonstration sample and ξsample is drawn from the model
p(ξ). Note the cost function being additive over time, this turns into a batch
of updates, one for each time-step. The functional versions of this procedure
simply generate datapoints indexed by x, u and a positive or negative regres-
sion target. This is demonstrated below for a particular variant of boosting.

The result is at heart a two-sample test and update procedure for learning
cost functions that is essentially equivalent to the Learning to Search proce-
dure outlined. We use here samples of model behavior rather than simply
the most probable/optimal trajectory as in the original algorithm descrip-
tion. The approach is also closely connected to Generative Adversarial Models
(GANs). The key difference is that GANs, unlike the exponential family or
IOC methods, don’t solve for the optimal generator in closed form, but in-
stead update an approximate generator. As a result, inference requires only
forward execution of the generator model and may be better behaved for
singular/constrained-to-a-manifold distributions. The cost is that inference
doesn’t enable building in engineered constraints or cost-function insight.

Solving the game A critical note is that we are indeed solving a game be-
tween generator/policy and discriminator/cost function so we must care-
fully control step size in learning a cost function. Thus it is particularly

http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
http://papers.nips.cc/paper/8076-neural-tangent-kernel-convergence-and-generalization-in-neural-networks.pdf
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important in the family of optimization algorithms above to take constrained
steps, or regularize to prior solutions. The optimization objective for a fixed
inference policy is linear, and hence will run away to infinity in the cost func-
tion update. This is the classic problem of a learning in a game– we have
a stable strategy applied for the outer player while the inner player (policy
generation) is best response. Boosting style methods do this automatically
via their additive model and step size control.

Structured Cost Families

It’s quite natural to write down parametric families of cost functions like
φ(x, u) = max2(0, xi − gθ(x0, Γ)) (for a context variable Γ) where we are at-
tempting to constrain the form of the objective function to be nicely behaved
(single global optimum, strong curvature, multiple derivatives everywhere)
in a variable of interested. This encourages inference to remain efficient and
enables building in engineering insight in cost-function design.

7.3 LEARCH generalized.

In the previous chapter, we discussed a functional gradient approach to solv-
ing the Structured Maximum Margin formulation of Inverse Optimal Con-
trol. That general non-parametric learning strategy is equally applicable to
the MaxEnt framework, as is a parametric “deep variant” enabled through
backpropagation.

We may step through the LEARCH-MaxEnt algorithm on a cartoon ex-
ample to see why it might work. We first consider a path driven by teacher
from a start point to a goal point, then imagine a simple planning problem
on a discretized grid of states that the robot can occupy. Every iteration of
the algorithm consists of the following: (a) computing a sample plan/policy
from our approximate MaxEnt distribution; (b) identifying where the plan
and teacher disagree and creating a data set consisting of features and the
direction in which we should modify the costs; (c) using a supervised learn-
ing algorithm to turn that data set into a simple predictor of the direction to
modify costs; and (d) recomputing a cost function as a (weighted) sum of the
learned predictors.

1 # Take a sequence of t r a j e c t o r y opt imizat ion problems and demonstrations [Mi , ξi )]
N
i=1 where MDP M i s a

planning problem c o n s i s t i n g of s t a t e s , ac t ions , and a t r a n s i t i o n funct ion used f o r planning ,

2 # f e a t u r e funct ion f : s t a t e , a c t i o n −> Rd t h a t d e s c r i b e s s t a t e s in terms of f e a t u r e s meaningful f o r
c o s t

3 # α , a step−s i z e ( which can be genera l ized to a shr inking sequence )
4 # R e l i e s on procedures to i n i t i a l i z e the c o s t funct ion ,
5 # and to bui ld an optimal maxent pol icy , and
6 # to sample t h a t po l i cy
7

8 def MaxEntLEARCH({(Mi , ξi )}N
i=1 , f , α ) :

9 s0 = i n i t ( ) # I n i t i a l i z e c o s t funct ion , s0 : Rd → R

10 f o r t in range ( T ) : # run f o r T i t e r a t i o n s
11 D = [ ] # I n i t i a l i z e the t r a i n i n g data s e t to empty
12 f o r i in range (N) : # f o r each example in the data s e t
13 ci = st ( f ) # Compute c o s t funct ion f o r t h i s problem
14 π∗i = Optimize (Mi , ci ) # f ind ( approximately ) the r e s u l t i n g MaxEnt pol i cy π∗i (x)

15 # t h a t leads to p(ξ) ∝ exp ∑(x,u)∈ξ ci (x, u)

16 µ∗ = Sample (Mi , π∗i )

17 # µ∗ ’ s conta ins the s t a t e a c t i o n p a i r s from a random t r a j e c t o r y crea ted by the Sampler .
18 # More s o p h i s t i c a t e d samplers might i n t e r l e a v e sampling and " opt imizat ion " .
19 # Generate p o s i t i v e and negat ive t r a i n i n g examples :

20 D
pos
i = [ ( fi (s, a) , 1 ) f o r ( s , a ) in µ∗ ]

21 D
neg
i = [ ( fi (s, a) , −1) f o r ( s , a ) in ξi ]

22 # i f the same s t a t e occurs in both samples , we can remove i t

23 D. append ( D
pos
i )

24 D. append ( D
neg
i )
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25 ht = Learn (D) # Train a r e g r e s s o r ( or c l a s s i f i e r ) ht : Rd−>R on the r e s u l t i n g data s e t
26 # The Data Aggregation i s not required but does a t t imes lead to more s t a b l e performance
27 st+1 = st + αt ht # Update the hypothesis c o s t funct ion
28 re turn sT

MaxEnt LEARCH Algorithm Pseudo-code

As with the previous LEARCH algorithm, we initialize the algorithm by
guessing at a cost function: for instance, by assuming a constant cost every-
where. Instead of a planner, we run the sampler that generates trajectories.
We can identify where the sample path agrees and disagrees with a demon-
stration by a teacher of the correct path. Again, we create a data-point that
contains the features that describe the state and assign it a target value to
increase or lower the cost depending on whether the sample or the teacher’s
path traverses that location.

The same procedure is run for locations of disagreement across multiple
trajectories (that is multiple planning problems). The resulting data set is
then handed to a supervised learning algorithm (linear regression, Support
Vector machines, a neural network) that produces a new predictor which
maps features to a scalar cost.

As with any boosting style algorithm, the proposed cost function is sim-
ply the old cost function added to the new predictor, and we continue to
update it by adding in new components.

MaxEnt Relation to Maximum Margin Planning

If we consider the limiting case of cost(ξ)temp = cost(ξ)
T as T → 0, and use the

gradient/boosting rules above we recover the max-margin approach to cost
function generation. This approximation is less robust (although can prove
very useful!) as it tends to lead to cost function collapses. Intuitively, this
occurs as we see demonstrations that are highly sub-optimal and we can only
generate optimal samples. These will tend to be lower in every element of
the feature vector φ(x, u) and hence the gradient will continue to shrink the
cost. No cost shrinkage, however, leads to higher entropy behavior, and thus
the costs can collapse. As such, for sub-optimal demonstrations, Maximum
Entropy should be preferred whenever it is appropriate. The LQR/Laplace
approximation dramatically increases the places where that is possible, as
sampling from the model is no more expensive than optimization.

7.4 Anomaly Detection

We can identify important actions (or trajectories) by computing

log p(ξexample) = −cost(ξexample)− log ∑
ξ

exp (−cost(ξ))

where the second term comes from the normalizing constant Z and is the
softmin of the path costs. A rough and ready approximation is to simply
compute

log p(ξexample) ≈ −cost(ξexample) + min
ξ

cost(ξ)

which requires only access to an optimal planner rather than sampling or
computing the complete partition function. Demonstrations that have highly
negative log-probabilities should be considered as outliers— the model
poorly captures the behavior.
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Refined estimates via Laplace Approximation We can, of course, also use the
Laplace (Gaussian) approximation to estimate how many standard devia-
tions a particular control variable is from from the expected (mode/mean)
control. This also makes it easy to make more refined analysis of outliers and
detect plans that are, say, k-standard deviations away from the mean in one
control or state variable axis. For instance, if we have a robotic system with
a clear longitudinal control mode, we can identify points that are 3σ away
in negative longitudinal control. Such anomalies (hard deceleration) can be
important to identify.

We can also plot (or statistically test) the Gaussian approximation of any
state variable and test how far wrong our current model is on any individual
state variable.

Gradients estimates. Given we know that φ(xexample, uexample)−φ(xsample, usample)

is an unbiased estimate of the gradient, we know it should on average be 0
if our model is well fit. Plots of the elements of these gradients provide clear
signal of model under-fitting or failure to set costs appropriately.

Forecasting. Work by [Baker et al., 2009] demonstrates people reason about
others as deliberative agents as well. This inverse planning framework el-
egantly captures aspects of the human “Theory of Mind.” Work in oper-
ations research and econometrics, particularly by Rust [Rust, 1992, 1994],
derives predictive distributions by developing a framework for learning cost
functions and predictive stochastic policies for agents acting according to
a Markov Decision Process (MDP). Intriguingly, the same policy structure
and dynamic programming algorithms derived from a maximum entropy
formulation are developed from considering an economist with only partial
access to the prediction problem and including “shocks” in a model of what
would otherwise be optimal behavior. These close connections between op-
erations research, control theory and machine learning deserve much deeper
investigation.

7.5 Test-time Costs and Constraints

An important power of the approach of model-based IOC, as opposed to
naive policy learning techniques, is the freedom to add new constraints and
cost functions not present in the training data or that are critical to enforce at
test time. Said differently, when generating trajectories for use in anger, we
may wish to further shape these beyond what is represented directly in the
data.

The planning-based approach allows a powerful combination of engineer-
ing design and machine learning integrated through test-time optimization.
The price we pay, of course, is in needing to solve a potentially complex op-
timization problem at test time, and the unfortunate fact that efficient 2nd
order dynamic programming solutions aren’t available in industry-standard
differentiable programming frameworks like Tensorflow or Torch.

We also note that it is often important that test time inference actually be
the most probable trajectory, or at least the temperature lowered dramatically
in sampling. This is imperative for a few reasons, notably that: a) we usually
want the best solution at test time, not a sample one and b) likelihood and
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entropy based models are strongly incentivized to “cover” and explain the
data available to them rather than simply provide the optimal generation. 14 14 Massimo Caccia, Lucas Caccia,

William Fedus, Hugo Larochelle,
Joelle Pineau, and Laurent Charlin.
Language gans falling short. CoRR,
abs/1811.02549, 2018

Policies, Probabilities, and Constraints

An important part of both the Bellman Equation (in its many instantiations
including LQR) and the MaxEnt Inverse Optimal Control formalism is that
it computes policies rather than trajectories. A notable difficulty arises in
combining either technique with hard constraints. We can use primal-dual
(lagrangian) methods for identifying the most probable trajectory, but both
feedback policies and conditional distributions break down with these tech-
niques. It’s unclear if it’s possible to achieve the best combination of primal-
dual and policy/probabilistic approaches. This failure tends to privilege
reparameterization based techniques as both feedback and uncertainty can
still be sensible. These tend to require more careful design than primal-dual
methods, at least for strictly enforcing constraints.
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Approximate Dynamic Programming

Approximate Dynamic Programming (ADP), also sometimes referred to as
neuro-dynamic programming, attempts to overcome the limitations of value
and policy iteration in large state spaces where some generalization between
states and actions is required due to computational and sample complexity
limits. Further, all the algorithms we have discussed thus far require a strong
access model to reconstruct the optimal policy from the value function and to
compute the optimal value function at all. We’ll consider algorithms in the
rest of these lecture notes that relax this strong notion of access.

Access Models

Up until this chapter, we’ve implicitly largely assumed that we have com-
plete, white box access to a full description of the system dynamics for the
purposes of applying dynamic programming. In practice, reinforcement
learning problems differ by the degree of “system access” that is available.
For the Tetris problem we often assign as homework for this class, we can
recreate the exact same state over and over again while learning (or testing
our algorithms). For robotic systems, we typically have a weaker form of ac-
cess – we can never create exactly the same state again, but we can often run
multiple trials. It’s worth reviewing here some notions of access model for a
system as the techniques we can apply and which will be most effective are
largely governed by this access. We review them in order of the strength of
the model access; each of the earlier access models can trivially simulate the
ones below it, but not (necessarily) visa-versa.

1. Full Probabilistic Description

In this model, we have access to an explicit cost function and the transi-
tion function for every state-action written down as a large matrix that
can be manipulated. A major downside of having this kind of model is
that it easily can become so large as to be computationally intractable for
a non-trivial problem. It is also information-theoretically hard to identify
this type of model from data– it simply isn’t possible to visit a very large
state-space.

2. Deterministic Simulative Model In the simplest version, we have a func-
tion that maps f (x, a) → x′, deterministically. 1 More broadly, a de- 1 We’ll assume through the discussion

below that the cost function has the
same access. It can be the case, however,
that we can be “in between” such
models. For instance, we might have
a more complete description of a
cost function as a quadratic, while
only having reset model access to the
dynamics.

terministic simulative model can mean that we while the dynamics are
stochastic, we have access to the random seed in a computer program, so
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we can recreate trajectories including the randomness that occurred. Such
access is what is typically available in computer simulations. 2 2 Although, unfortunately, non-

determinism in simulators is more
prevalent than one might expect.3. Generative Model

In this model, we have programmatic access. We can put the system
into any state we want.

4. Reset Model
In this model, we can execute a policy or roll-out dynamics any time

we want, and we can always reset to some known state or distribution
over states. This is a good model for a robot in the lab that can be reset to
stable configurations.

5. Trace Model
This is the model that best describes the real world. Samuel Butler said

"Life is like playing a violin solo in public and learning the instrument as
one goes on"; the trace model captures the inability to “reset” in the real
world.

There are a few general strategies one can pursue for applying approxi-
mation techniques.

Approximate the Algorithm. The most straightforward approach is to
take the algorithms we’ve developed thus far Policy Iteration and Value Itera-
tion, and replace the steps where we would update a tabular representation
of the value function with a set of sampled (state-action-next state) and a
supervised-learning function approximator.

This approach is an incredibly tempting way to pursue hard RL problems:
we simply plug in a regression estimator and run existing, known-to-be-
convergent algorithms. In a sense, we can see the tremendously successful
Differential Dynamic Programming approach as of this form: we are finding
quadratic approximations and running the existing value-iteration approach.

We find below that while at times successful in practice, there are many
sources of instability in these algorithms that result in often extremely poor
performance. We analyze informally the two main sources of error: the
bootstrapping that happens in dynamic programming mixes poorly with
generalization across states, and even more significantly, the change of pol-
icy induced by the max operation produces a change in distribution (affects
which state-actions matter most) that dramatically amplifies any errors in the
function approximation process. We discuss some strategies for remediating
these.

Approximate the Bellman Equation. The next broad set of strategies is
to treat the Bellman equation itself as a fixed point equation and optimize
to find a fixed point. These techniques, known as Bellman Residual Techniques
are dramatically more stable and have a richer theory.3 [2] Practically, the 3 L. C. Baird. Residual algorithms:

Reinforcement learning with function
approximation. In International Confer-
ence on Machine Learning, 1995; and Wen
Sun, Geoffrey J Gordon, Byron Boots,
and J Bagnell. Dual policy iteration. In
Advances in Neural Information Processing
Systems, 2018

performance is often (but not always!) worse than methods based on the
"approximate the dynamic programming" strategy above, and it suffers as
well from the change of distribution problem.

Approximate the Policy Alone. We cover a final approach that eschews
the bootstrapping inherent in dynamic programming and instead caches
policies and evaluates with rollouts. This is the approach broadly taken by
methods like Policy Search by Dynamic Programming 4 and Conservative Policy 4 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003

Iteration5. 6

5 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

6 Methods like the Natural Policy
gradient approach that we discuss later
are closely connected.
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Action-Value Functions

In this lecture, we consider the finite horizon case with horizon T. The quality
function, Q-function, or action-value function is defined as,

Q∗(x, a, t) = c(x, a) + total value received if optimal thereafter,

Qπ(x, a, t) = c(x, a) + total value received if following policy π thereafter.

These can be restated in terms of the Q-function itself as

Q∗(x, a, t) = c(x, a) + γEp(x′ |x,a)[min
a′

Q∗(x′, a′, t + 1)]

Qπ(x, a, t) = c(x, a) + γEp(x′ |x,a)[Q
π(x′, π(x′), t + 1)]

Note that unlike infinite horizon case where a single value function/action-
value function is defined, there are T value functions/action value functions
for the finite horizon case, one for each time step.

Once we have the action-value functions, the value function V∗ and the
optimal policy π∗ are easily computed as

V∗(x, t) = min
a∈A

Q∗(x, a, t)

π∗(x, t) = argmin
a∈A

Q∗(x, a, t)

We can compare the above equation to how we compute the optimal policy
from the optimal value function,

π∗(x, t) = argmin
a∈A

c(x, a) + γEp(x′ |x,a)[V
∗(x′, t + 1)]

Pros and Cons of Action-Value Functions

Pros

1. Computing the optimal policy from Q∗ is easier compared to extracting
the optimal policy from V∗ since it only involves an argmax and does not
require evaluating the expectation and thus the transition model.

2. Given Q∗, we do not need a transition model to compute the optimal
policy.

Cons

1. Action-value functions take up more memory compared to value func-
tions (|States| x |Actions|, as opposed to |States|).7 7 Note, however, that if we use a value

function instead of Q-function, we
may need another |States| x |Actions|
table to store the transition probability
in order to find the optimal policy
if the transition model is not given
analytically.

Fitted Q-Iteration

We can now describe Fitted Q-Iteration, an approximate dynamic program-
ming algorithm that learns approximate action-value functions from a batch
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of samples. Once the data is collected the Q-function is approximated with-
out any interaction with the system.

Algorithm 10: Fitted Q-iteration with finite horizon.

Algorithm FittedQIteration({xi, ai, ci, x′i}n
i=1, T)

Q(x, a, T)← 0, ∀x ∈ X, a ∈ A

forall t ∈ [T − 1, T − 2, . . . , 0] do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γ mina′ Q(x′i , a′, t + 1)
D+ ← D+ ∪ {input, target}

end
Q(·, ·, t)← Learn(D+)

end
return Q(·, ·, 0 : T − 1)

The algorithm takes as input a data-set D which contains samples of the
form {state, action, associated cost, next state}. In practice, this is obtained by
augmenting expert demonstration data with random exploration samples.
As in value iteration, the algorithm updates the Q functions by iterating
backwards from the horizon T − 1. Essentially, for each time step t, we create
a training data-set D+ by using the learned Q function learned for time
step t + 1. This data-set is fed into a function approximator Learn, which
could be any of your favorite machine learning models (linear regression,
neural nets, Gaussian processes, etc), to approximate the Q function from the
training dataset. We could also start with an initial guess for Q(·, T). 8 8 The version presented here assumes

the dynamics and cost functions are the
same at each time-step.

Note that the above fitted Q-iteration algorithm can be easily modified to
work for infinite horizon case. In fact, the infinite horizon version is simpler,
because we can choose to maintain a single Q function. Hence, for each
iteration, we can just collect a batch of samples, and update the Q function.

Algorithm 11: Fitted Q-iteration with infinite horizon.

Algorithm FittedQIteration({xi, ai, ci, x′i}n
i=1)

Q(x, a)← 0, ∀x ∈ X, a ∈ A

while not converged do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γ mina′ Q(x′i , a′)
D+ ← D+ ∪ {input, target}

end
Q← Update(Q, D+)

end
return Q

There are a few of things that we need to be aware of when using fitted
Q-iteration in practice:

• In a goal-directed problem, we need to make sure that our samples in-
clude goal states in order to get meaningful iterations.

• Often it makes sense to run the algorithm on features of the state-action
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pair (x, a), not the raw state-action pairs themselves.

• Fitted Q-iteration can be run repeatedly, augmenting the data set with
new samples from the resulting policies.

• For goal-directed problems, the goal states xi are nailed down to 0 Q-
value (target = ci), and bad or infeasible states are provided a large con-
stant target value c−. The former ensures that the Q-values do not drift
up over time, and the latter prevents the Q-value for bad states from
blowing up to ∞.

• Value functions are not smooth in general (e.g. mountain car problem).
A simple trick to fix this is to add noise to the transition model, which
smooths out discontinuities.

Case Study

A robotics example of work using Fitted Q-Iteration is demonstrated in 9 9

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.3532&rep=rep1&type=pdf
The authors demonstrate that a neural (in modern parlance, “deep”) fitted

Q-learning algorithm can learn a control strategy from scratch for driving
a car along a GPS-guided course, minimizing cross-track-error (distance
of vehicle to one side of a straight line between waypoints). All data for
learning came from actual driving; i.e. there is neither a model nor a use of
data-augmentation. As has been, perhaps surprisingly, common in robotics,
the actual network is a relatively shallow 3 layer neural net for regression.
This contrasts with work for imitation learning of driving controllers like that
of 10 where very deep networks were used. 10 M. Nechyba and J. A. Bagnell. Stabi-

lizing human control strategies through
reinforcement learning. In Proc. IEEE
Hong Kong Symp. on Robotics and Control,
volume 1, pages 39–44, April 1999

8.1 Challenges when using Fitted Q-Iteration

Unfortunately, while in the tabular case (maintaining a value for each state-
action pair) the Q-function function converges 11 as the number of iterations 11 Under suitable assumptions discussed

earlier.of value-iteration (or policy-iteration) steps increases to ∞, this does not
generically hold under function approximation. The value function might
converge, diverge, oscillate, or behave chaotically. Perhaps worse, meaningful
bounds on the resulting performance of a policy learned using value function
approximation can be either hard to obtain or vacuous.

Fitted Q-iteration and Fitted Value Iteration (a similar algorithm as fitted
Q-iteration but approximates the value function and counts on a model to
find optimal controls), especially the infinite horizon version, is prone to
bootstrapping issues in the sense that sometimes it does not converge. Since
these methods rely on approximating the value function inductively, errors
in approximation are propagated, and, even worse, amplified as the algorithm
encourages actions that lead to states with sub-optimal values.

The key reason behind this is the minimization operation performed
when generating the target value used for the action value function. The
minimization operation pushes the desired policy to visit states where the
value function approximation is less than the true value of that state– that is
to say, states that look more attractive than they should. This typically hap-
pens in areas of state spaces which are very few training samples and could,
in fact, be quite bad places to arrive. From a learning theory perspective,
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this can be viewed as a violation of the i.i.d assumption on training and test
samples.

The following examples from [3] [Boyan and Moore, 1995] demonstrate
this problem 12. 12 All figures from Boyan et. al

Example: 2D gridworld

Figure 8.1.1 shows the 2D grid world example, which has a linear true value
function J∗.

Continuous Gridworld
J*(x,y)1

0.8

0.6
20
15 10.4 10 0.8
0
5

0.60.2 00
0.40.20.2

0.40.4
0.60.6 0.20

0.2 0.4 0.6 0.8 1 0.80.8
101x

y

Figure 8.1.1: The continuous
gridworld domain.

Figure 8.1.2 shows that VI with converges to the true value function.

Iteration 12 Iteration 25 Iteration 40

20 20 20
15 15 151 1 1
10 10 100.8 0.8 0.85 5 5
0 0.6 0 0.6 0 0.6
00 00 00

0.4 0.20.2 0.4 0.20.2 0.40.20.2
0.40.4 0.40.4 0.40.4

0.2 0.60.6 0.2 0.60.6 0.20.60.6
0.80.8 0.80.8 0.80.8

10 10 101 1 1

Figure 8.1.2: Training with
discrete value iteration.

However, figure 8.1.3 shows that Fitted Value Iteration with quadratic
regression fails to converge. The quadratic function, in trying to both be
flat in the middle of state space and bend down toward 0 at the goal corner,
must compensate by underestimating the values at the corner opposite
the goal. These underestimates then enlarge on each iteration, as the one-
step lookaheads indicate that points can lower their expected cost-to-go by
stepping farther away from the goal.

Iteration 17 Iteration 43 Iteration 127

8 10
-2006 1 0 1 1-300

2
4 0.8 -10 0.8 -400 0.8

-20 -5000 0.6 0.6 0.6
00 00 00

0.20.2 0.40.20.2 0.4 0.20.2 0.4
0.40.40.40.4 0.40.4

0.2 0.60.6 0.20.60.6 0.2 0.60.6 0.80.80.80.8 0.80.8 101110 110

Figure 8.1.3: Training with
quadratic regression. The value
function diverges. Fitted Value
Iteration with quadratic regres-
sion underestimates the values
at the corner opposite the goal,
and these underestimates am-
plify at each iteration.
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Example: car on hill

Figure 8.1.4 shows the car-on-hill example.

Car-on-the-Hill J*(pos,vel)

40 2
20 1
0
-1 0-1 vel

-0.5-0.5
-1 -0.5 0 0.5 -1

0pospos 0
pos 0.50.5 -2

Figure 8.1.4: The car-on-the hill
domain.

Figure 8.1.5 shows that a two layer MLP can also diverge to underestimate
the costs.

Iteration 11 Iteration 101 Iteration 201

12 50
11 2 25 2 20

0 -10010
1 -25 1 -200 19 -50 -300

-1 -1 0-1 0 -1 0 -1-1

-0.5-0.5 -0.5-0.5 -0.5-0.5
-1

00 00
-1 -1 00

0.50.5 -20.50.5 -2 0.50.5 -2

Figure 8.1.5: Training with
neural network.
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8.2 Approximate Policy Iteration

In the previous section we looked at how approximating the action-value
function can potentially be effective in large state spaces. In this section, we’ll
consider approximating the action-value function for a policy from a batch of
offline data and then improving that policy. The process of evaluating a pol-
icy will be more stable compared with fitted Q iteration as the min operation
will no longer be used in the training loop. As with policy iteration, there
are two fundamental steps involved in approximate policy iteration process
- policy evaluation and policy improvement. We’ll consider how trust-region
and line search techniques can control the change of distribution problems that
results when we update the policy later in later lectures.

Policy Evaluation

Algorithm 12: Approximate policy evaluation with finite horizon

Algorithm Evaluate({xi, ai, ci, x′i}n
i=1, T)

Qπ(x, a, T)← 0, ∀x ∈ X, a ∈ A

forall t ∈ [T − 1, T − 2, . . . , 0] do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γQπ(x′i , π(x′i , t + 1), t + 1)
D+ ← D+ ∪ {input, target}

end
Qπ(·, ·, t)← Learn(D+)

end
return Qπ(·, ·, 0 : T − 1)

In Algorithm 12, improved stability of the function approximation comes
from that fact that we are interested in approximating Qπ and not Q∗. This
kind of stability often turns out to be critical, and many practical RL imple-
mentations favor a policy iteration variant. Naturally, there is also a “batch”
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infinite-horizon version of the above algorithm:

Algorithm 13: Approximate policy evaluation with infinite hori-
zon

Algorithm Evaluate({xi, ai, ci, x′i}n
i=1, π)

Qπ(x, a)← 0, ∀x ∈ X, a ∈ A

while not converged do
D+ ← ∅
forall i ∈ 1, . . . , n do

input← {xi, ai}
target← ci + γQπ(x′i , π(x′i))
D+ ← D+ ∪ {input, target}

end
Qπ ← Update(Qπ , D+)

end
return Qπ

Function approximation induces very significant problems in computing
good policies or value functions. Lets take a closer look at the problems that
result.

Function Approximation Divergence

We consider now the more stable variant–function approximation of the
policy evaluation step alone–rather than the more complex (non-linear) Q-
iteration variant. 13 Even here, Tsitsiklis and Van Roy [6] demonstrate that 13 Below we’ll discuss that the more

difficult to manage problems come from
the changing the policy.

without care, function approximation has the potential to behave very poorly.
Consider the MDP in Figure 8.2.1 has two states S1 and S2. The following

details the setup:

Figure 8.2.1: Two state MDP

1. The reward for being at any state (hence the true value function) is {0, 0}

2. Consider a discount factor γ = 0.9

3. The feature {x} is simply the numerical value of the state {1, 2}

4. The value function is approximated with linear function: V(s)← wT x

The graphical view of the value function approximation is shown in
Figure 8.2.2. Since the reward is always 0, we know the true value function is
{0, 0}. This corresponds to w = 0. We will now examine if the approximation
converges to this value.

Let’s start with w = 1. One round of value iteration yields the following
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target values for the function approximator

Vπ(s) = r(s, π(s)) + γV(s′)

V(s1)← 0 + γw ∗ 2 = 1.8

V(s2)← 0 + γw ∗ 2 = 1.8

If a least squares approach is used to fit to this data, we’d arrive at w = 1.2.
Repeated iteration eventually results in the function approximator blowing
up exponentially in the number of iterations iterations/number of backups
that are performed. 14 14 One might hope that the finite hori-

zon variant might not suffer from
divergence in this example. That is
technically correct (observed by Wen
Sun), but is ineffective as the error in-
stead simply grows exponentially in
horizon length).

Some Remedies for Divergence

If the training data is weighted by how much time the agent visits a state,
then divergence problem can be arrested for linear function approximators. In
our example, if we spend t = 1 time-steps in S1, then we spend γ

1−γ = 9
time-steps at S2. If this is used as a weight in the weighted least squares
fitting, then after the first iteration w = 0.92, i.e, it proceeds towards the
correct value 0. This on-policy weighting, where the loss is weighted by the
time spent in each state can be demonstrated to ensure convergence. Unfor-
tunately, the same result does not hold for a more general class of function
approximators. [6] An entire literature has grown up around attempts to
maintain the advantages of approximating the dynamic programming it-
erations while ensuring convergence in more general settings. Sutton and
Barto’s book 15 extensively covers these efforts and is highly recommended. 15 R. S. Sutton and A. G. Barto. Rein-

forcement Learning: An Introduction. MIT
Press, 1998

Figure 8.2.2: Approximate
Value Function Iteration

Policy Improvement

The second step of the Approximate Policy Iteration process is to update or
improve the policy. We select a new policy by simply acting greedily with
respect to the estimated Q-function of the old one:

π′(x, t) = arg
a

min Qπ(x, a, t) (8.2.1)

In API we have moved the dominant form of instability to this step of the
process.

The Central Problem of Approximate Dynamic Programming

We discussed before the problem of value function approximation over-
estimating how good it thinks a state is, and then this error amplifying as
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T-1T-2T-3

Approximated Q

True Q

Upper half of state
is BAD

Lower half of state
is GOOD

Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between

17 That is to say, choose with that prob-
ability at each time-step of execution of
the policy.

policies πnew = απnew greedy + (1− α)πold, where the mixing weight α is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing α that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line
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search or trust-region constraints. We defer discussion of these methods to
the Policy Search chapter ??.

Interestingly, there becomes no clear line between the modern, controlled
Approximate Policy Iteration algorithms and algorithms that are variants of
Policy Gradient. When an action-value function estimator is used that “boot-
straps” using Bellman updates, we tend to view them as API algorithms.
When the updates are made using pure roll-out estimates, we tend to view
them as “policy gradient” algorithms. In practice, the distinction in practical
use of the terms is somewhat artificial.

8.3 Policy Search by Dynamic Programming

Our focus thus far has been on Bellman bootstrapping and approximating the
value function either of a given, or optimal, policy. Can we use the core idea
of dynamic programming without bootstrapping values? Richard Bellman’s
thoughts shed some light on this issue:

“An optimal policy has the property that whatever the initial decision
may be, the remaining decisions constitute an optimal policy .... [for
the resulting state]”

The central idea of dynamic programming is that it does not matter how
a decision maker arrives at a state; rather, what matters is that given arrival
at the state, the decision maker chooses optimally thereafter. This insight
allows us to solve problems recursively. This notion is related to the mono-
tonic improvement of policy iteration. If we cache policies and re-estimate
the value function at every iteration backwards in time, we avoid the over-
estimation and compounding errors problem discussed above as we get
unbiased estimates of the real costs that will occur in the future, and errors
are not amplified as we proceed through iterations.

Let’s try and make this intuition about caching policies concrete. As is
standard in dynamic programming, we proceed backwards (over a finite
horizon) from T − 1. At iteration T − τ, instead of memoizing (approx-
imately) a value function in the future and bootstrapping from that, we
memoize just the policies in the future and “roll-out” the total cost of an ac-
tion and future policy decisions all the way to T − 1. A new policy is learned
via estimating an action-value function at T − τ. 22 for a single time step 22 Or, often more powerfully, simply

optimizing the policy directly to choose
actions with high future returns.

given the rollouts. A new policy is installed at the time-step T − τ. Let’s walk
through how this works below.

A Sketch of an Algorithm

Let’s see what it might look like to use dynamic programming without mem-
oizing values:
Time T− 1:

We can approximate π̃∗,T−1(x) = arg
a

min c(x, a) either analytically or via

sampled states from a (for now fixed) distribution µT−1(s) which we’ll call
the baseline distribution. We’ll assume for now that actions are simply chosen
uniformly at random 23. This forms our approximation of the optimal policy 23 Or that all of them are tried instead

for a given state! That has lower vari-
ance, but requires a reset access model
that lets us return to the exact same
state.

at T − 1.
Time T− 2:
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For any sampled input pair {xi, ai}, the target value is c(xi, ai)+ c(x′, πx′ ,T−1).
So an error in approximation of π does not bootstrap, it shows up as the pol-
icy is always evaluated honestly. However, we again need to specify a distri-
bution of states to optimize with respect to, µT−2(s), and given these samples
can attempt to find a one-step optimal policy π̃∗,T−2(x) that minimizes the
average cost under the distribution of samples.

Similarly now for any k, (starting with k=2 and moving backwards in
time) we can compute: Time T− k:

For a sampled input pair {xi, a}, the target value is c(xi, ai)+ c(x′, πx′ ,T−k+1)+

c(x′′, πx′ ,T−k+2 + · · · .
Note that this approach address the problem of learning over an exponen-

tially large set of policies, but it does with a quadratic in horizon T depen-
dence, rather than the linear in T dependence that is achieved by policy or
value iteration. 24 24 Of course, whether this is cost is

“worth” it or not depends on both the
horizon length and how much errors
are amplified by backups.

The Baseline distribution

Note that the algorithm requires a distribution µt(s) from which to draw
sample states (as do any of the batch fitted iteration methods). This presents
something of a chicken-or-the-egg situation as intuitively (and which we’ll
quantify below) we’d like to sample states from where the optimal policy
would visit. This kind of requirement of having an idea of where to sample
states is fairly common though: The PSDP approach was partially inspired
by the work of 25 and by differential dynamic programming (DDP) generally 25

where policies are generated using as input an initial sample of trajectories.
An insight provided by that paper is the usefulness of having information
regarding where good policies spend time. This can come from a heuristic
initial policy or demonstration by an “expert” at a task. The idea of baseline
distribution is the natural probabilistic generalization of an initial trajectory.

In essence, the baseline distribution tells our learners where to focus their
effort, and shortcuts the the difficulties of global exploration. We count on the
reset access model and the baseline distribution to solve the hard problem
of identifying and getting to states that really matter. We’ll spend more time
in later lectures discussing baseline distributions and exploration as the
general idea of leveraging a baseline distribution is a powerful “cheat” that is
equally applicable to policy search/gradient methods as it is to the dynamic
programming ones mentioned here.

PSDP as classification

With the crude sketch of a meta-algorithm in hand, we can consider a natural
instantiation of PSDP using calls to a supervised learning classification
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algorithm.

Algorithm 14: PSDP using classification

Data: Given weighted classification algorithm C and baseline
distribution µt(s).

foreach t ∈ T − 1, T − 2, . . . , 0 do
Sample a set of n states si according to µt:
foreach si do

foreach a in A do
Estimate Qa,πt+1 ...,πT−1 (si) by rolling out a trajectory of length

T − t starting from si and using the action a on the
generative model. At each time step after the initial one use
the previously computed (near-optimal) policies to choose
actions.

Compute (dis)advantages: For each sampled state si, compute
the best (highest value) action and denote it a∗i .

Create a training set L consisting of tuples of size |A|n:
〈si, a, Qa∗i ,πt+1 ...,πT−1 (si)−Qa,πt+1 ...,πT−1 (si)〉

Set πt = C(L), where the classifier C is attempting to minimize the
weighted 0/1 loss, or an appropriate surrogate.

In the algorithm above we have replaced idealized expectations with
Monte Carlo estimates and what it naturally an optimization over one-step
policies by a call to an arbitrary supervised-learning algorithm. If we can
perform the supervised learning task at each step well we will achieve good
performance at the RL task at least relative to the baseline distribution.
Action-value approximation via regression. A particular variant of the sam-
ple based PSDP above can be implemented if it is possible to efficiently find
an approximate action-value function Q̃a,πt+1 ...,πT−1 (s), i.e., if at each time-step
we can ensure that ε ≥ Es∼µt(s)[maxa∈A|Q̃a,πt+1 ...,πT−1 (s)−Qa,πt+1 ...,πT−1 (s)|].

(Recall that the policy sequence (a, πt+1 . . . , πT−1) always begins by
taking action a.) If the policy πt is greedy with respect to the estimated
action value Q̃a,πt+1 ...,πT−1 (s), then we can show that this induces a policy that
is within 2Tε 26 of choosing the optimal action according to the distribution 26 Think about where the 2 comes from

here!µ. It is important to note that this error is phrased in terms of an average error
over state-space, as opposed to the worst case errors over the state space
that are more standard in dynamic programming algorithms and drive the
instabilities of those approaches. We can intuitively grasp this by observing
that value iteration style algorithms may amplify any small error in the value
function by pushing more probability mass through where these errors are.
PSDP, however, as it does not use value function backups, cannot make this
same error; the use of the computed policies in the future keeps it honest.
There are numerous efficient regression algorithms that can minimize this, or
approximations to it.

“Convergence” and Partial Observability

Note that even as the time horizon we consider gets very large when we are
in the function approximation setting, Q does not necessarily converge as
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k → T even when it would in the full tabular setting. To see why this might
be so, consider an extreme example.

Imagine a hypothetical situation of making a two legged robot walk.
Further, imagine we limit our policy to have only a single feature given to
the function approximation: the time-step t — i.e. no description of state
whatever. As demonstrated in 27, an algorithm like PSDP can actually learn 27 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003

a sequence of open loop torques that make the robot perform an effective,
albeit brittle, walking motion. The value of choosing some action will be very
different even at neighboring time-steps, of course, because we’re encoding
an open-loop strategy here. Generically, this is true: we can get different Q-
functions at neighboring time steps– this is a strong indication, however, of
aliasing of real underlying states.

Algorithm 15: Iterated Policy Search by Dynamic Programming

Algorithm Iterated-PSDP(π)
Start with arbitrary time-varying policy π0

k← 0
while not converged do

for ∀x ∈ X, t ∈ {0, . . . , T − 1} do
πk+1(x, t)← argmin

a∈A

Qπk (x, a, t) Collect samples

{{x(i)t , a(i)t , c(i)t , x(i)t+1}T−1
t=0 }n

i=1 by executing policy πk

Qπk+1 ←Learn({{x(i)t , a(i)t , c(i)t , x(i)t+1}T−1
t=0 }n

i=1, πk)
end
k← k + 1

end
return πk(x), ∀x

Understanding Performance Guarantees

There are multiple possible bounds that can be established for the algorithms
above. Perhaps the most insightful on is a bound on performance with a
multiplicative dependence on average error in the case that we are willing
to compare ourselves against all policies rather than expressing regret with
respect to a limited class. 28 We state the bound as follows: 28 Although the search in PSDP may,

of course, still be conducted over the
limited class.Theorem 2 (MDP Performance Bound). Let π = (π0, . . . , πT−1) be a non-

stationary policy returned by an ε-approximate version of PSDP in which, on each
step, the policy πt found comes within ε of maximizing the value over all policies.
I.e.,

Es∼µt [Vπt ,πt+1 ...,πT−1 (s)] ≥ maxπ′Es∼µt [Vπ′ ,πt+1 ...,πT−1 (s)]− ε . (8.3.1)

Then for all possible policies (including including the optimal one) πref and its
induced distribution over states µπref we have that

Vπ(s0) ≥ Vπref (s0)−∑
t

ε||µ
t
πref

µt ||∞

where the infinity norm refers to the sup of state space.
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We sketch a proof here. It is cleanest to apply the Performance Difference
Lemma we developed earlier, but there is a certain value to understanding the
induction that is being applied directly. 29 Proof: It is enough to show that 29 Exercise: Apply the performance

difference lemma for a simplified
version of this proof.

for all t ∈ T − 1, T − 2, . . . , 0,

Es∼µt
πref

[Vπref
t ,...(s)−Vπt ,...(s)] ≤

T−1

∑
τ=t

ε||µ
τ
πref

µτ
||∞

This again follows by induction, the inductive step being the non-trivial
part:

Es∼µt
πref

[Vπref
t ,...(s)−Vπt ,...(s)] (8.3.2)

= Es∼µt
πref

[Vπref
t ,...(s)−Vπref

t ,πt+1 ...(s)] + Es∼µt
πref

[Vπref
t ,πt+1 ...(s)−Vπt ,...(s)]

≤ Es∼µt+1
πref

[Vπref
t+1,...(s)−Vπt+1 ...(s)] + Es∼µt

πref
[maxat Qat ,πt+1 ...(s)−Vπt ,...(s)]

≤ Es∼µt+1
πref

[Vπref
t+1,...(s)−Vπt+1 ...(s)] + Es∼µt

π
[maxat Qat ,πt+1 ...(s)−Vπt ,...(s)]||

µt
πref
µt ||∞

≤ Es∼µt
π
[Vπref

t ,πt+1 ...(s)−Vπt ,...(s)] + ε|| µ
t
πref
µt ||∞

=
T−1

∑
τ=t

ε||µ
τ
πref

µτ
||∞

We are able to “change measures” with the infinity norm (i.e., the largest
value taken at any state) of the ratio of the probability distributions here
because the action-value function optimized over a is always greater than
the value of any other policy. This change of measure follows directly by
multiplying inside the second expectation by µt

µt
, and then bounding the

result.
This bound is powerful in that it lets our error go to zero even if we do

not get a perfect distribution µt as long as we drive our expected error ε to be
low. We can also drop the dependence of µt on t, by simply averaging all the
time slice distributions together

1
T

T−1

∑
t=0

µt

if we are willing to learn our policies to ε/T error.
This bound provides insight by indicating that it is very important that

the “training” distribution be close in a particular way to the distribution
induced by any policy (notably the optimal one) we want to compete against.
In particular, when training each classifier we want to ensure that we put

mass on all places where a good policy spends time so that the ratio
µτ

πref
µτ

is never too large. This makes intuitive sense– we’re better to make sure
our learner has seen examples of possible situations it can get into even
if this means removing some of the mass from more probable instances.
Crudely speaking, in choosing a µ we should err on the side of “smearing”
our best guess of the distribution µπref induced by the optimal policy across
neighboring states.

This style of proof where we use some variation on the performance dif-
ference lemma and a change of distribution is very common to the analysis
of almost all modern approximate policy iteration methods.
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Iterated PSDP

PSDP as presented takes as input the set of space-time distributions µt and
generates a policy in polynomial time with non-trivial global performance
guarantees with respect to µt. In many applications, we are able to provide
a useful state-time distribution to the algorithm. For instance, in control and
decision tasks human performance can often provide a baseline distribution
to initialize PSDP. We also often have heuristic policies that can be used to
initialize the algorithm. Finally, domain knowledge often provides useful
indications of where good policies spend time.

In any of these cases, we do not have an accurate estimate of µ for an
optimal policy. A natural approach is to apply PSDP as the inner loop for
a broader algorithm that attempts to simultaneously compute µs and uses
PSDP to compute optimal policies with respect to it. Perhaps the most natu-
ral such algorithm is given below.

Algorithm 16: IteratedPSDP(µ, π, v)

Let πnew = PSDP(µ)
vnew = Value(πnew)
µnew = ComputeInducedµ(πnew) in
if vnew ≤ v then

return π

else
return IteratedPSDP (µnew, πnew, vnew)

Value here is a function that returns the performance of the policy and
ComputeInducedµ returns a new baseline distribution corresponding to a
policy. These can both be implemented a number of ways, perhaps the most
important being by Monte-Carlo sampling.

We start Iterated PSDP with v = 0 and a null policy in addition to our
“best-guess” µ. Iterated PSDP can be seen as a kind of search where the
inner loop is done optimally. For exact PSDP (ε = 0) on an MDP with finite
states and actions, we can prove that performance improves with each loop
of the algorithm and converges in a finite number of iterations.

In the case of approximation, it is less clear what guarantees we can make.
Performance improvement occurs as long as we can learn policies at each
step that have smaller average residual advantages than the policy we are
attempting to improve over.

Summary

PSDP is a useful algorithm template and can serve as a kind of design pat-
tern for approximate DP algorithms and as a tool of theoretical ananlsis.
While there are a number of practical applications of PSDP, even within
robotics30, it is not nearly as commonly used in practice as online variants of 30

the approximate dynamic programming or policy gradient algorithms we’ll
investigate later.
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9
Temporal Difference Learning and Q-Learning

In the previous chapter, we covered several sample-based reinforcement
learning algorithms including Fitted Q-Iteration and Approximate Policy
Iteration. These methods are sometimes called batch methods or offline methods
because a batch of samples is collected and a fitted value function (or action-
value function) is found by minimizing the training error for these samples
in one “chunk”. Offline methods like these make efficient use of available
training data, but are computationally expensive and suffer from high mem-
ory consumption as the number of samples increases. They also tend to
suffer quite badly from the distribution mismatch problems we described in
the last chapter.

In this lecture, we present several online techniques that perform an in-
cremental update to a value function estimate after each state transition
(x, a, r, x′). 1 Such online methods can learn a policy with relatively low com- 1 Note that in this chapter we have

switched from cost to reward r, as is
common in the reinforcement learning
literature.

putational and memory cost because the updates are made based on a single
state transition. Such a state transition (x, a, r, x′) may be referred to in the
literature as an experience.

First, we present the Temporal-Difference (TD) method for online policy
evaluation. Next, we present a TD-variant denoted SARSA that extends
online policy evaluation to the action-value function. Finally, we explore
Q-learning as a method for finding the action-value function for the optimal
policy, and hence finding the optimal policy.

In this lecture, we consider the infinite time-horizon setting, and for no-
tational simplicity will usually assume a deterministic policy. Algorithms
generalize to stochastic polices aswell. Recall that the value function for a
fixed policy π satisfies the Bellman equation:

Vπ(x) = E

[
∞

∑
t=0

γt r(xt, π(xt))

]
, where x0 = x. (9.0.1)

The action-value function for a fixed policy π satisfies:

Qπ(x, a) = r(x, a) + E

[
∞

∑
t=1

γt r(xt, π(xt))

]
, where x0 = x. (9.0.2)

The Bellman equation in this case,

Vπ(x) = r(x, π(x)) + γ Ep(x′ |x,π(x))[V
π(x′)]

Qπ(x, a) = r(x, a) + γ Ep(x′ |x,a)[Q
π(x′, π(x′))].

(9.0.3)



98 draft: modern adaptive control and reinforcement learning

The Bellman equations for the optimal value function V∗ and action-value
function Q∗ of the optimal policy π∗ are naturally,

V∗(x) = maxa′∈A

(
r(x, a) + γ Ep(x′ |x,a)[V

∗(x′)]
)

Q∗(x, a) = r(x, a) + γ Ep(x′ |x,a)[maxa′∈A Q∗(x′, a′)].
(9.0.4)

9.1 Temporal-Difference Learning

Temporal-difference (TD) Learning is an online method for estimating the
value function for a fixed policy π. The principle idea behind TD-learning is
that we can learn about the value function from every experience (x, a, r, x′)
as a robot traverses the environment rather than only at the end of a trajec-
tory or trial. 2 2 TD is truly one of the core algorithmic

ideas in RL. It forms the heart of TD-
Gammon, the first algorithm to beat
humans at the difficult stochastic game
of backgammon. That paper is a
masterpiece and set the pattern for
modern self-play RL in games. ’s
outstanding book provides much more
details on Temporal Difference methods
and is highly recommended.

; and R. S. Sutton and A. G. Barto.
Reinforcement Learning: An Introduction.
MIT Press, 1998

Given an estimate of the value function Ṽπ(x) we would like to perform
an update in order to minimize the squared loss,3,

3 Technically, this squared loss is
an estimate of the Bellman error
Edπ (x)[

1
2

(
Vπ(x)− Ṽπ(x)

)2
] where

dπ(x) is the probability of a state x
being visit under policy π.

L =
1
2
(
Vπ(x)− Ṽπ(x)

)2 . (9.1.1)

Since we do not yet know the value function, evaluating this loss requires
evaluating equation (9.0.1). Naïvely, this method would require waiting until
the end of an episode before updating Ṽπ(x). Instead, we estimate Vπ(x)
as y = r + γ Ṽπ(x′) and perform an online update for each experience
(x, π(x), r, x′). Plugging this estimate into the loss function we get 4

4 Notice the trick that has been
played here! We’re treating the value
estimate of the future state as if it
were “correct”– as if it were not
a function of the parameters that
define our value function. This is, of
course, totally incorrect. The Bellman
residual and the Residual Gradient
(RG)isthe“obvious′′itemtooptimizeandit′sgradientandwediscussitatlengthintheendo f thechapter. RG issimplythecorrectderivativeo f thesquaredbellmanerror.TheTDerrorhasthekeyadvantagethaterrorspropagateonlybackwardsintime, astheydointhedynamicprogramswehavediscussedthus f ar.TDcomesthewithsigni f icantadditionalburdenastheresultingalgorithmscanbeshowntonotbethegradiento f anypossibleloss f unctionandthuscanbetrickiertodealwiththansimplegradientbasedalgorithms.

Lapprox(y, Ṽπ) =
1
2
(
y− Ṽπ(x)

)2 . (9.1.2)

The partial derivative of eq. (9.1.2) with respect to Ṽπ is:

∇Ṽπ(x)Lapprox =
(
y− Ṽπ(x)

)
. (9.1.3)

If we assume now a parametric form for Ṽπ(x) in terms of parameters θ, we
can then use the chain rule we can then express ∇θL =

(
y− Ṽπ(x)

)
∇θṼπ(x)

In the case of a tabular representation (one value for each state), our
update rule with a step-size of α would simply be:

Ṽπ(x)← Ṽπ(x) + α
(
r + γṼπ(x′)− Ṽπ(x)

)
← (1− α)Ṽπ(x) + α

(
r + γṼπ(x′)

)
. (9.1.4)

The term
(
r + γṼπ(x′)− Ṽπ(x)

)
is known as the TD error.

By looking at the second line of (9.1.4), one may notice that TD-learning is
also closely related to an exponential moving average.
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Algorithm TD

The TD-learning algorithm is shown in Algorithm 17.

Algorithm 17: The TD-learning algorithm.

Initialize Ṽπ

while Ṽπ not converged do
Initialize x according to a particular starting state
while x is not a terminal state do

apply action a← π(x)
receive experience {x, π(x), r, x′}
update Ṽπ(x)

Ṽπ(x)← (1− α)Ṽπ(x) + α
(
r + γṼπ(x′)

)
set x ← x′

return Ṽπ

Grid-World Example

The diagram below shows a grid-based world, where the robot starts in the
upper left (0, 0), and the goal is in the lower right (3, 3). The robot gets a re-
ward of +1 if it reaches the goal, and 0 everywhere else. There is a discount
factor of γ. The policy is for the robot to go right until it reaches the wall,
and then go down.

We start by initializing Ṽπ(x) = 0, ∀x ∈ X.

As the robot moves one cell over from the start state (yellow arrow above),
the reward is 0, and the value of both the current state and the next state is 0,
so the approximate gradient used in the update rule (9.1.4) evaluates to 0 and
no update is performed. As the robot moves into the goal state (red arrow),
the reward is 1, so the approximate gradient evaluates to 1. We then update
the second-to-last cell with (9.1.4) and we get:

Ṽπ((3, 2))← (1− α)Ṽπ((3, 2)) + α
(
1 + γṼπ((3, 3)

)
= (1− α)× 0 + α× (1 + 0) = α.

Another iteration of the algorithm gives us:
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Ṽπ((3, 2))← (1− α)Ṽπ((3, 2)) + α
(
1 + γṼπ((3, 3)

)
= (1− α)× α + α× (1 + 0)

= α + α (1− α),

Ṽπ((3, 1))← (1− α)Ṽπ((3, 1)) + α
(
1 + γṼπ((3, 2)

)
= (1− α)× 0 + α× (0 + γ× α)

= α2 γ.

This method is slow, because we have to run the whole policy just to
update the next cell. We will see that SARSA and Q-learning has similar
issues of inefficient usage of experience.

9.2 SARSA

SARSA extends the Temporal-Difference method presented in the previous
section to evaluate policies represented by a action-value functions Qπ(x, a).
Similar to the TD case, we wish to evaluate a policy by performing an online
update to obtain an estimate, Q̃π(x, a), of the true action-value function
Qπ(x, a):

Qπ(x, a) = r(x, a) +
∞

∑
t=1

γtE[r(xt, π(xt))] (9.2.1)

As in TD, we seek to minimize the loss

Lapprox =
1
2
(
y− Q̃π(x, a)

)2 (9.2.2)

where y = r(x, a) + γQ̃π(x′, π(x′)). Following a similar derivation as used
for the TD update, we arrive at the SARSA update rule:

Q̃π(x, a)← (1− α)Q̃π(x, a) + α
[
r(x, a) + γQ̃π(x′, π(x′))

]
. (9.2.3)
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Algorithm SARSA

The SARSA algorithm is shown in Algorithm 18.

Algorithm 18: The TD-learning algorithm.

Initialize Q̃π

while Q̃π not converged do
Initialize x according to a particular starting state
while x is not a terminal state do

apply action a← π(x)
receive experience (x, π(x), r, x′, π(x′))
update Q̃π(s)

Q̃π(x, a)← (1− α)Q̃π(x, a) + α
[
r(x, a) + γQ̃π(x′, π(x′))

]
set x ← x′

return Ṽπ

One may notice that TD-learning and SARSA are essentially approximate
policy evaluation algorithms for the current policy. As a result of that they
are examples of on-policy methods that can only use samples from the current
policy to update the value and Q function. Q-learning, by contrast, is an off-
policy method that can use samples from any policies 5 to update the optimal 5 Although clearly it requires exploring

all actions in all states.action-value function.

9.3 Q-Learning

Q-Learning attempts to estimate the optimal action-value function Q∗(x, a)
from an online stream of experiences. Recall that the Bellman Equation for
the optmal action-value function Q∗(x, a) is,

Q∗(x, a) = r(x, a) + γ Ep(x′ |x,a)[maxa′∈A Q∗(x′, a′)].

Suppose we receive experience (x, a, r, x′). If the transition model is deter-
ministic, we could simply update the action-value function as,

Q̃∗(x, a)← r + γmaxa′∈AQ̃∗(x′, a′).

However, just as in SARSA, this performs poorly when the transition or
reward functions are stochastic. Instead, we update Q̃∗ to the weighted sum,

Q̃∗(x, a)← α
[
r + γmaxa′∈AQ̃∗(x′, a′)

]
+ (1− α)Q̃∗(x, a),

where 0 ≤ α ≤ 1 is the learning rate.
One may notice that we do not need the current policy π to update Q̃∗.

Moreover, Q-learning approximates the optimal action-value function, the
Bellman Equation of which does not depend on the specific policy that the
agent is executing. Therefore, Q-learning is an off-policy algorithm that can
use samples from any policies to update Q̃∗. From our experience in the last
chapter, one should however, be naturally suspicious of any algorithm that
claims to be able to this as it must suffer from distributional shift as Value or
Policy Iteration do.

Q-learning is guaranteed to converge Q̃∗ to the optimal action-value func-
tion Q∗ as number of iterations k → ∞ given that the following conditions
hold:
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1. Each state-action pair is visited infinite times

2. limk→∞ ∑∞
k=0 αk = ∞

3. limk→∞ ∑∞
k=0 α2

k < ∞,

where αk is the learning rate at iteration k. The latter two conditions mean
that the learning rate α must be annealed over time. Intuitively, this means
that the agent begins by quickly updating Q̃∗, then slows down to refine its
estimate as it receives more experience.

Fitted Q-Learning

Just as the fitted Q-iteration algorithm, we can use a function approximator
to approximate the action-value function.

Suppose that we approximate Q∗ with the function Qθ with parameter θ.
Instead of directly updating our action-value function, we now must update
θ to achieve the desired change in Qθ .

To fit θ, we might choose to minimize a loss function

L =
1
2
(y−Qθ(x, a))2

that penalizes deviation between the approximate action-value function
Qθ(x, a) and the value y = r + γmaxa′∈AQθ(x′, a′) predicted by a Bellman
backup.

First, we must derive the “gradient” of L. 6 By applying the chain rule, 6 Note again this is the same bogus
math where we pretend y is not a
function of the parameters. One might
naturally ask why not just compute
the true gradient? This turns out to be
a somewhat nuanced question. One
intuitive reason is the notion that our
value estimates are likely to better
closer to the end of a trial/closer to
a goal, and that updates should flow
only backwards in time as in dynamic
programming updates. If we computed
the true gradient (the Bellman residual
gradient as it is known , we would
have the estimate of the value function
in the past changing to more closely
match the estimate in the future as well.
A further technical difficulty, discussed
in Baird’s work is that unbiased es-
timates of the true Bellman residual
gradient require multiple samples of
an action outcome from each state vis-
ited. This point of the “derivation” is to
give you intuition why you might come
up with this rule by thinking about
dynamic programming flowing updates
backwards and time and the chain rule
providing updates.

L. C. Baird. Residual algorithms:
Reinforcement learning with func-
tion approximation. In International
Conference on Machine Learning, 1995

we find

∇θL = (y−Qθ(x, a)) [∇θy−∇θQθ(x, a)]

= (y−Qθ(x, a))
[
γ∇θQθ(x′, a∗)−∇θ Qθ(x, a)

]
where a∗ = argmaxa′∈A Qθ(x′, a′) is the optimal action according to
Qθ . Unfortunately, it is not possible to obtain an unbiased estimate of
Qθ(x, a)∇θ Qθ(x′, a∗) using one sample (x, a, r, x′). We can find the optimal
parameter θ by performing gradient descent on L with the update rule,

θ ← θ − α∇θL. (9.3.1)

Q-learning, however, assumes that y is constant and approximates the gradi-
ent as

∇̃θL = − (y−Qθ(x, a))∇θQθ(x, a). (9.3.2)

The complete fitted Q-learning update rule is found by substituting
eq. (9.3.2) into eq. (9.3.1):

θ ← θ + α [y−Qθ(s, a)]∇Qθ(x, a)

← θ + α
[(

r + γQθ(x′, a∗)
)
−Qθ(x, a)

]
∇Qθ(x, a).

Bellman Residual Method

Fitted Q-learning as described above does not implement gradient descent
and, thus, is not guaranteed to converge to a local minimum. The Bellman
residual algorithm avoids the approximation of eq. (9.3.2) by estimating the
true gradient ∇θL.

∇θL = (y−Qθ(x, a))
(
γ∇θ Qθ(x′, a∗)−∇θ Qθ(x, a)

)
.
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This estimation is only unbiased if we can generate two or more independent
successor states for taking action a in state s. Generating these samples is
trivial if we are able to simulate the system; i.e. have access to a known or
learned transition model. If we do not know the transition model, then it is
only possible to perform a Bellman residual update if we postpone a backup
until the same state-action pair has been observed two or more times. This
is often impossible when learning on a real system that has a continuous
state-action space.

Exploration Policies

Unlike SARSA, which is an on-policy method, Q-learning is an off-policy
method that can learn from arbitrary (x, a, r, x′) experiences, regardless of
what policy was used to generate them. This means that it is possible to use
an exploration policy training that encourages the agent to visit previously
unexplored regions of the state-action space. Exploration policies guaran-
tee that the agent visits each state an infinite number of times and ensure
convergence when the function is represented by a look-up table.

Two exploration policies that are commonly used with Q-learning are:

1. ε-Greedy. Choose the greedy action a = argmaxa∈A Q̃(x, a) with proba-
bility 1− ε. Otherwise, with probability ε, choose an action uniformly at
random a ∼ uniform(A). Higher values of ε encourage more exploration.
Usually we set ε close to 1 as learning starts, and decay ε → 0 as we go
along.

2. Boltzmann Exploration. Choose action a with probability

π(a|x) = exp
[
βQ̃(x, a)

]
∑a′∈A exp

[
βQ̃(x, a′)

] ,

which is weighted towards selecting actions with higher Q̃-values. Lower
values of β encourage more exploration: the exploration policy with β = 0
is essentially a uniform distribution, as β → ∞ the exploration policy
becomes the greedy policy

π(a|x) = arg max
a′∈A

Q̃(x, a′).

Hence, we usually start with β close to 0 and gradually increase β.

9.4 Experience Replay and Replay Buffers

Q-learning and SARSA are computationally efficient, but make inefficient
use of data. Unlike batch methods, each sample is only used exactly once.
This means that the agent must observe each transition ((x, a, r, x′) for Q-
learning and (x, a, r, x′, a′) for SARSA) many times to propagate the reward
backwards in time.

Experience relay allows Q-learning to re-use experience multiple times by
building a database D of experiences under the currently policy, denoted
the replay buffer. Once enough data has been collected, the agent performs
a fixed number of Q-learning or SARSA updates on the batch. This tech-
nique bridges the gap between offline methods and online methods, and can
potentially combine the advantages the two.
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Moreover, because Q-learning is an off-policy algorithm, the experiences
generated from previous trajectories and policies can be re-used to update
the estimate of action-value functions. Therefore, we can use a replay buffer
across Q-learning updates: every time a new experience is generated, it is
added to the replay buffer, and the agent performs Q-learning updates using
random samples from the replay buffer.

A common claim in the literature is that experience relay also helps ad-
dress the problem of correlated samples for fitted Q-learning. In the case of
online updates, the a experience is likely to be highly correlated with the
previous/next experience because they are from the same trajectory. This
makes the function approximator easily overfit to the current part of the state
space, but fail to perform well for the entire state space. However, such cor-
relation is mitigated when we use a batch of samples from possibly different
trajectories to update the function approximator.

9.5 The Philosophy of Temporal Differences*
This section develops a view of Bellman
errors and temporal differences that
is less well-studied in the literature.
It provides some larger philosophical
insight as well as proof techniques, and
perhaps will be the root of important
technical tools in the future. but can
skipped for readers eager to move on to
other control approaches.

While the theory of Markov Decision Processes has become a powerful foun-
dation for reasoning about temporal difference algorithms, we might argue
that there is a still more fundamental intuition that is being captured in TD-
style algorithms. Consider the fully online,Trace access model, and the goal
of predicting a quantity, like long-term reward, over an arbitrary long time
sequence. The fundamental claim at the heart of temporal difference and
bellman residual methods is if predictions of long term value are temporar-
ily consistent, then they must also be good proxies for the actual long term
reward; equivalently, one cannot make consistent predictions (in the sense of
temporal differences) and fail to correctly predict the long term reward.

This notion is quite robust to both noise and imperfect approximation.
In fact, we can show still stronger claims: if a learner’s predictions compete
with the best predictor in a class of learners, then they will also compete with
the best in that same class at the goal of long-term value estimation. That is,
the errors need not even be small– doing as well as possible at consistency
implies doing well at long-term prediction as well. This holds over any
possible noise sequence– even adversarial noise, establishing the centrality
of the notion of Bellman consistency. The central idea is that methods such
as TD and RG should be fundamentally understood as online algorithms as
opposed to standard gradient minimization methods, and that one cannot
simultaneously make consistent predictions in the sense of TD and BE while
doing a poor job in terms of long-run predictions.

This basic model of relating long-term prediction and temporal differ-
ences was established in the work of Schapire and Warmuth [1996]. We
follow the analysis of Sun and Bagnell [2015] to provide simple guarantees
for a wide class of algorithms.

Problem Setting

Consider a sequence of observations (note they need not have the semantics
of state!) that can either be Markovian as we’ve assumed this far in the lec-
ture, or even adversarially chosen. We define the observation at time step
t as xt ∈ Rn, which represents features of the environment at time-step t.
Let’s assume that feature vector x is bounded as ‖x‖2 ≤ X. The correspond-
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ing reward at step t is defined as rt ∈ R, where we assume that reward is
always bounded |r| ≤ R ∈ R+. Given a sequence of observations {xt}
and a sequence of rewards {rt}, the long-term reward at t is defined as
yt = ∑∞

k=t γk−trk, where γ ∈ [0, 1) is a discounted factor. Note there is no
expectation being taken here because there is no assumption of a probabilis-
tic environment. Given a function space F , the learner chooses a predictor
f at each time step from F for predicting long-term rewards. In this section,
we assume that any prediction made by a predictor f at a state x is upper
bounded as | f (x)| ≤ P ∈ R+, for any f ∈ F and x.

At time step t = 0, the learner receives x0, initializes a predictor f0 ∈ F
and makes prediction ŷ0 of y0 as f0(x0). Rounds of learning then proceed as
follows: the learner makes a prediction ŷt of yt at step t as ft(xt); the learner
observes a reward rt and the next state xt+1; the learner updates its predictor
to ft+1. This interaction repeats and is terminated after T steps.

We denote the goal of estimating the long-term discounted sequence of
rewards in this setting as the problem of online prediction of long-term reward,
PE .

Definitions

We first define the signed Bellman Error at step t for predictor ft as bt =

ft(xt)− rt − γ ft(xt+1), which measures effectively how self-consistent ft is
in its predictions between time step t and t + 1. We define the corresponding
Bellman Loss at time step t with respect to predictor f as:

`b
t ( f ) := ( f (xt)− rt − γ f (xt+1))

2. (9.5.1)

The Signed Prediction Error of long-term reward at t for ft is defined as
et = ft(xt)− yt and e∗t = f ∗(xt)− yt for f ∗ accordingly. What we actually
care about is the long term Prediction Error (PE) e2

t of a given algorithm in
terms of the best possible PE within our class of hypotheses. 7 7 To lighten notation in the following

sections, all sums over time indices
implicitly run from 0 to T − 1 unless
explicitly noted otherwise.

We can also define an online version of TD Loss at step t as:

`d
t ( f ) := ( f (xt)− rt − γ ft(xt))

2. (9.5.2)

While we won’t consider proving any results in this section, we note that
more sophisticated versions of the arguments for Bellman error can be ap-
plied to the TD-error allowing us to develop a theory and new set of algo-
rithms. The results are more difficult and more limited so we defer those to
the literature 8. 9 8 Wen Sun and J. Andrew (Drew)

Bagnell. Online bellman residual
and temporal difference algorithms
with predictive error guarantees. In
Proceedings of The 25th International Joint
Conference on Artificial Intelligence - IJCAI
2016, April 2016

9 As we noted earlier, though classic TD

algorithm’s update step is extremely
similar to stochastic gradient descent,
there is actually no well-defined objec-
tive function on which TD is performing
stochastic gradient descent. The online
view however provides a clear sequence
of objectives and a clear goal of regret
minimization.

Understanding Bootstrapping in Online Learning Setting

The true loss that a learner should care about is PE: ( ft(xt)− yt)
2. However

directly apply no-regret online algorithms on PE is not realistic in practice
since in order to get yt—the discounted sum of future rewards, one has to
wait to get all rewards {ri} (or some truncation of this) for t ≤ i ≤ T. On the
other hand, the algorithms we’ve discuss in this chapter use bootstrapping,
which leverages the current predictor ft to estimate yt as yt ≈ rt + γ ft(xt+1).

This suggests a different perspective on temporal difference learning and
residual gradient learning: In the online learning setting, RG and TD both could be
understood as running Online Gradient Descent on Bellman loss `b

t and TD loss `d
t ,

respectively.
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At every time step t, after receiving the Bellman loss `b
t ( f ), let us consider

what happens if apply online gradient descent on `b
t ( f ):

ft+1 = ft − µtbt(∇ f ft(xt)− γ∇ f ft(xt+1)), (9.5.3)

where we denote ∇ f f (x) as the functional gradient of the evaluation func-
tional f (x) at function f .10 Now for linear function approximation where 10 We assume the function ∇ f f (x)

belongs to F . This is true for function
classes such as Reproducing Kernel
Hilbert Space (RKHS).

f (x) is represented as wTx, the update step in Eq. 9.5.3 becomes:

wt+1 = wt − µt(wT
t xt − rt − γwT

t xt+1)(xt − γxt+1), (9.5.4)

which reveals the RG algorithm proposed by 11. 12 11

12 Without the use of double samples to
handle stochasticity.

Online Gradient Descent is one of the popular no-regret online learning
algorithms. The above perspective suggests that RG and TD could be under-
stood as applying a special no-regret online algorithm—OGD, to the Bellman
loss and TD loss. This new perspective then naturally motivates the question:
can any other no-regret online algorithms, such as Online Newton step, On-
line Frank Wolf and implicit online learning, be applied to Bellman loss `b

t
and TD∗ loss `d∗

t , and achieve guarantees on the long term loss we actually
care about PE?

More formally, what one might hope is that if we can find a time-sequence
of predictors that achieve the no-regret guarantee on TD loss {`d

t } or Bellman
loss `b

t , then for the sequence of predictors { ft}, the real loss we care about
∑ e2

t could also be upper bounded via some competitive ratio:

lim
T→∞

1
T ∑ e2

t ≤ C
1
T ∑ e∗2t , ∀ f ∗ ∈ F , (9.5.5)

where C ∈ R+ is constant. Schapire and Warmuth [1996] and later Li [2008]
proved variants of this for particular gradient-style algorithms on these loss
functions.

Bounding Long Term Predictive Regret

What we can show is that if an online algorithm running on the sequence
of loss {lt( f )} is no-regret and the generated sequence of predictors { ft}
satisfies a stability condition (we’ll detail below), prediction error can indeed
be upper bounded in the form of Eq. 9.5.5. The analysis is elementary, and
use only a telescoping of the error terms combined with classical Cauchy-
Schwartz bounds. What makes the analysis cool, besides the simplicity of
the toolkit requires, is that it does not place any probabilistic assumption
whatever on the sequence of observations {xt} nor any assumption on the
form of predictors f ∈ F (e.g., f (x) does not have to be linear).

We start by first showing two key lemmas below:

Lemma 3. Let us define dt = ft(xt)− rt − γ ft+1(xt+1). We have:

∑ d2
t ≥ (1− γ)2 ∑ e2

t + (γ2 − γ)(e2
T − e2

0). (9.5.6)

Proof: At the heart of dynamic programming is a tele-scoping of terms.
Schapire and Warmuth [1996] used such to a telescopng of term to implicitly
show that dt = ( ft(x)− vt + vt − (r + γ ft+1(xt+1))) = (et − γet+1). Squaring
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both sides and summing over from t = 0 to t = T − 1, we get:

∑ d2
t = ∑(et − γet+1)

2

= ∑ e2
t + γ2 ∑ e2

t+1 − 2γ ∑ etet+1

≥∑ e2
t + γ2 ∑ e2

t+1 − γ ∑ e2
t − γ ∑ e2

t+1

= (1− γ)2 ∑ e2
t + (γ2 − γ)(e2

T − e2
0). (9.5.7)

The first inequality is obtained by applying Young’s inequality to 2etet+1 to
get 2etet+1 ≤ e2

t + e2
t+1. 2

In words, this tells us squared TD lossupperboundsthelongtermpredictiveerror(moduloaboundaryterms).

Lemma 4. For any f ∗ ∈ F , the prediction error ∑ e∗2t upper bounds the BE ∑ b∗2t
as follows:

∑ b∗2t ≤ (1 + γ)2 ∑ e∗2t + (γ + γ2)(e∗20 − e∗2T ). (9.5.8)

The proof of Lemma 4 is very similar to the one for Lemma. 3 and left as
an exercise.

Now let us define a measure of the change in predictors between the
steps of the online algorithm as εt = ft(xt+1)− ft+1(xt+1), which is closely
related to notions of online stability. We’re going to require this change to be
asymptotically controlled to get good performance. Then bt and dt are then
closely related with each other by εt:

dt = ft(xt)− rt − γ ft+1(xt+1)− γ ft(xt+1) + γ ft(xt+1)

= bt + γεt.

Squaring both sides, we get:

d2
t = b2

t + 2btγεt + γ2ε2 ≤ b2
t + b2

t + γ2ε2
t + γ2ε2

t

= 2b2
t + 2γ2ε2

t , (9.5.9)

where the first inequality is coming from applying Young’s inequality to
2btγεt to get 2btγεt ≤ b2

t + γ2ε2
t . In words, this tells us the signed tem-

poral difference is exactly the signed Bellman error added to how much
the our predictors disagree on xt+1, and thus we can upper bound the
TD errorbythe BE andastabilityterm.Thistightlyconnectstheideao f temporaldi f f erenceandbellmanerrors.

We are now ready to state the following main theorem of this paper:

Theorem 5. Assume a sequence of predictors { ft} is generated by running some
online algorithm on the sequence of loss functions {lt}. For any predictor f ∗ ∈ F ,
the sum of prediction errors ∑ e2

t can be upper bounded as:

(1− γ)2 ∑ e2
t ≤2 ∑(b2

t − b∗2t ) + 2γ2 ∑ ε2
t

+ 2(1 + γ)2 ∑ e∗2t + M, (9.5.10)

where

M = 2(γ + γ2)(e∗20 − e∗2T )− (γ2 − γ)(e2
T − e2

0).

By running a no-regret and online stable algorithm on the loss functions {lt( f )},
as T → ∞, the average prediction error is then asymptotically upper bounded by a
constant factor of the best possible prediction error in the function class:

lim
T→∞

:
∑ e2

t
T
≤ 2(1 + γ)2

(1− γ)2
∑ e∗2t

T
. (9.5.11)
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Proof: Combining Lemma. 3 and Lemma. 4, we have:

∑ d2
t − 2 ∑ b∗2t

≥ (1− γ)2 ∑ e2
t + (γ2 − γ)(e2

T − e2
0)

− 2(1 + γ)2 ∑ e∗2t

− 2(γ + γ2)(e∗20 − e∗2T ). (9.5.12)

Subtracting 2b∗2t on both sides of Eq. 9.5.9, and then summing over from
t = 1 to T − 1, we have:

∑ d2
t −∑ 2b∗2t ≤ 2 ∑(b2

t − b∗2t ) + 2γ2 ∑ ε2
t .

Combining the above two inequalities together, we have:

2 ∑(b2
t − b∗2t ) + 2γ2 ∑ ε2

t

≥ (1− γ)2 ∑ e2
t + (γ2 − γ)(e2

T − e2
0)

− 2(1 + γ)2 ∑ e∗2t − 2(γ + γ2)(e∗20 − e∗2T ). (9.5.13)

Rearrange inequality (9.5.13) and define M = 2(γ + γ2)(e∗20 − e∗2T )− (γ2 −
γ)(e2

T − e2
0), we obtain inequality (9.5.10)

Assume that the f̄ = arg min f∈F ∑ lt( f ), then if the online algorithm is
no-regret, we have

1
T ∑ b2

t − b∗2t =
1
T ∑ lt( ft)− lt( f ∗)

≤ 1
T ∑ lt( ft)− lt( f̄ )

=
1
T

Regret ≤ 0, T → ∞. (9.5.14)

If, further, our choice of online algorithm satisfies a stability condition, we
can remove a term. For the generated sequence of predictors ft, we say the
algorithm is online stable if:

lim
T→∞

1
T ∑( ft(xt+1)− ft+1(xt+1))

2 = 0. (9.5.15)

Intuitively, this form online stability means that on average the difference
between successive predictors is eventually small on average. Online stability
is a general condition and does not notably limit the scope of the online
learning algorithms. 13 13 For instance, when f is linear, the

definition of stability of online learn-
ing in (see Eq. 3 in ) and imply
this kind of stability. In fact, almost all
popular no-regret online learning algo-
rithms satisfy this condition. Moreover,
it turns out that this stability is actually
essential– without this requirement we
can generate counterexamples to the
having any competitive ratio at all.

Ankan Saha, Prateek Jain, and Ambuj
Tewari. The Interplay Between Stability
and Regret in Online Learning. arXiv
preprint arXiv:1211.6158, pages 1–19,
2012. URL http://arxiv.org/abs/

1211.6158; Ankan Saha, Prateek Jain,
and Ambuj Tewari. The Interplay
Between Stability and Regret in Online
Learning. arXiv preprint arXiv:1211.6158,
pages 1–19, 2012. URL http://arxiv.

org/abs/1211.6158; and Stephane
Ross and J. Andrew Bagnell. Stability
Conditions for Online Learnability.
arXiv:1108.3154, 2011. URL http:

//arxiv.org/abs/1108.3154

Thus, assuming stability, we have: 1
T ∑ ε2

t = 0 when T → ∞.
Also, since we assume | f (x)| ≤ P and |r| ≤ R, we can see M must be

upper bounded by some constant. Hence, we must have M
T = 0, as T → ∞.

Under the conditions that the online algorithm is no-regret and satisfies
online stability, we get Eq. 9.5.11 by dividing both sides of Eq. 9.5.10 by T
and taking T to infinity. 2

Note that in the Thm. 5, Eq. 9.5.10 holds for any f ∗ ∈ F , including the f ∗

that minimizes the prediction error.

Conclusion

It is interesting that we can derive and prove bounds for a wide class of
algorithms without making the markov assumption. A natural question is

http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1211.6158
http://arxiv.org/abs/1108.3154
http://arxiv.org/abs/1108.3154
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whether we can use these approaches to design algorithms that are more
robust to distributional shift, or to understand the superior performance of
online methods like TD as compared with offline methods like fitted value-
iteration.





10
Black-Box Policy Optimization

Up to this point we have learned primarily about dynamic programming-
based approaches to control. These problems set up a Bellman equation
which can be solved to discover an optimal or approximately optimal con-
troller. This lecture focuses on ways to avoid relying on Bellman equations
and the perils of dynamic programming and distribution shift. Put more
poetically by Andrew Moore, this chapter focuses on how not to be “blinded
by the beauty of the Bellman equation.”

The following approaches will focus on finding a set of parameters which
defines a good controller. For example, in Tetris, we could imagine defining
a policy πθ : x 7→ a which is parameterized by θ. These parameters might
be weights on various features defined on state-action pair (x, a), such as
the maximum height of the board or the number of holes of the resulting
configuration. A policy under this parameterization can be defined at every
state x as,

πθ(x) = argmin
a∈A

(θ1 × # of Holes(x, a) + θ2 ×Height(x, a)) .

In general, we have
πθ(x) = argmin

a∈A

θT f (x, a),

where f (x, a) is a vector of features of the state-action pair (x, a).
Let ξ denote a trajectory of states and actions, ξ = (x0, a0, . . . , xT−1, aT−1).

We define the total reward of the trajectory ξ as,

R(ξ) =
T−1

∑
t=0

r(xt, at).

Our goal is to find the parameters that produce the policy that maximizes
the expected total reward of the trajectories,

J(θ) = Ep(ξ|θ)[R(ξ)] = Ep(ξ|θ)

[
T−1

∑
t=0

r(xt, at)

]
,

where p(ξ|θ) is the probability of the trajectory ξ given the policy parameter-
ized by θ.

There are tremendous advantages to this simple, stochastic optimization
viewpoint on the reinforcement learning problem:
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Pros of Policy Optimization with Parameterized Policies:

• No dependence on size of state space (directly)

• A policy can be much simpler than a value function. For example,
in the famed mountain car problem 1, the optimal policy is simple 1 https://en.wikipedia.org/wiki/

Mountain_car_problemto specify: move backwards until a certain point, then move for-
wards. The value function for this problem, however, is significantly
more complex.

• Engineering knowledge about the domain can be put directly into
the policy by selecting good features.

• Only needs a crude reset access model to optimize the policy di-
rectly.

• Simple and easy to code up!

Cons of Policy Optimization with Parametrized Policies:

• Needs careful design of features. With poor features, no amount of
searching will find a good policy. Also, the features need to have
somewhat smooth gradients for this type of gradient descent to be
effective.

• Strong dependence on the number of parameters. Irrelevant or
redundant parameters make the problem much harder (potentially
exponentially harder).

• Exploration is particularly difficult in this setting and can lead to
exponentially slow convergence in the number of states.

• As we’ll discuss in the next chapter, we’re ignoring key, known,
information including the relationship (e.g. Jacobian) between
parameters and action choices and the markov structure of states
and rewards. This may come at significant sample complexity cost.

10.1 How to find a good parameter set θ?

Gradient Ascent/Descent

Perhaps the most obvious way to solve this problem would be to use a gra-
dient ascent style algorithm. Gradient ascent starts at some intial point,
evaluates the gradient of the objective function J(θ), which is the expected
total reward function in our case, and then takes a step up the gradient (if we
are maximizing). Gradient ascent continues stepping in the direction of the
gradient (the direction that the function J has the greatest rate of increase)
until it converges, i.e., the gradient is small enough.

Problem 1:

• J(θ) may not be differentiable, i.e., changing θ by a infinitesimal
small change δ could cause J to jump substantially

• J(θ) may be very hard to differentiate analytically, particularly
because, by assumption we only have 0th order access. That is, we
can draw samples, but we can’t get access to derivates of the world
dynamics.

https://en.wikipedia.org/wiki/Mountain_car_problem
https://en.wikipedia.org/wiki/Mountain_car_problem
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Idea: approximate the gradient using finite differences
For each parameter we could add a small scalar δ to it and evaluate the

value of J at θ + δi, where δi = (0, . . . , 0, δ, 0, . . . , 0).
Then, we can use the finite difference 1

δ (J(θ + δi)− J(θ)) to estimate the
derivative in the ith direction. The estimated gradient then is

∇̃ =
1
δ
·


J(θ + δ1)− J(θ)

...
J(θ + δn)− J(θ)

 .

Problem 2:

• We may not have access to the value of J(θ), rather, we may have a
noisy sample J̃(θ), which is the case for the expected total reward
function.

Idea: estimate the gradient using the samples.
Similarly, we could add a small scalar δ to each parameter and take a

single sample J̃(θ + δi) to estimate the derivative in the ith direction. The
estimated gradient is

∇̃ =
1
δ
·


J̃(θ + δ1)− J̃(θ)

...
J̃(θ + δn)− J̃(θ)

 .

However, this estimate can be noisy. If we want a better estimate of the
gradient, we could sample multiple times and take an average. A better way
would be to use a linear least squares approach for a large number of sample
vectors. Specifically, we create tuples, {∆(j), J̃(θ + ∆(j))− J̃(θ)}N

j=1. Then, by
the Taylor series expansion, we have,

J̃(θ + ∆(j))− J̃(θ) ≈ (∇θ J)> ∆(j)

Then, the problem of estimating gradient can be interpreted as the following
linear least squares regression problem,

∇̃ = argmin
∇′

N

∑
j=1

∣∣∣ (∇′)> ∆(j) −
(

J̃(θ + ∆(j))− J̃(θ)
) ∣∣∣2 .

In the next lecture, we will see other methods to estimate ∇θ J called the
policy gradient methods.

In some domains, such as a deterministic simulator (although the simula-
tor may simulate randomness, it itself is deterministic, such as Tetris), we can
use the so called Pegasus [1] trick: simply fix the random seed. This can be
useful because it fixes a single (noisy) estimate of the true gradient and helps
keep the gradient consistent. This can be dangerous because it is sacrificing
bias to obtain a lower variance estimate and may drive θ towards areas areas
that are not actually a local optima.

With the gradient estimate, we can update the parameter θ:

θ ← θ + α ∇̃
where α is the step size or learning rate. In practice, for good convergence we
need α ≈ 1√

T
where T is the time horizon of the problem.

Note, however, that poor gradient estimates can cause incorrect behavior.
In the worst case, the estimated gradient near an almost flat section could be
0 in all directions.
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Alternative and Useful 0th-Order Optimization Algorithms

In addition to the algorithms covered in more detail below, it may be worth
considering other black box techniques:

• Nelder-Mead. At least one of those others always had good luck with this
method (sometimes called the simplex method). 2 2 ; ; and

• CMA-ES and Cross-Entropy 3 These algorithms balance explortation with 3

“gradient-like” exploitation by maintaining a probability distribution over
parametric hypthothesis. We detail one variant below.

• Simulated annealing. This method performs gradient descent like updates
(more precisely, hill-climing updates). At each iteration, another set of
parameters θ +∆ is randomly generated with a small ∆, if J(θ +∆) > J(θ),
we update the parameters θ ← θ + ∆. Otherwise, we still accept the
update θ ← θ + ∆ with some probability related to the “temperature” of
the system. Initially, the “temperature” is high which means the algorithm
tends towards random movement, i.e., even if the value is not better, we
still make the updates with high probability. As the search continues the
temperature decreases and the algorithm is more likely to move in the
ascent direction.

• Genetic Algorithms. These are generally a method of last resort. They
evaluate a bunch of random parameters and then the best parameters
“survive” and “reproduce” with some “mutation” to create a new set of
parameters. This method is nice because it requires basically no knowl-
edge of the problem and, when tuned properly, will explore the space
nicely, although it can be very difficult to tune the hyper-parameters of
these approaches.

• Q2. This method generates a bunch of samples and fits a quadratic, then
solves a quadratic program to optimize the weights. To avoid running
outside the region about which the algorithm “quadraticized”, it applies
linear constraints to bound the solution. It then re-quadraticizes about the
new estimate. 4 4

• Coordinate Descent. In order to find a minimum, this algorithm performs
a line search along one coordinate direction at the current point during
each iteration. Different coordinate directions are cycled through as the
algorithm iterates.

Nelder-Mead

(See the wikipedia article: http://en.wikipedia.org/wiki/Nelder%E2%80%
93Mead_method for more info and a nice animated gif)

The Nelder–Mead method was proposed by John Nelder and Roger
Mead, two English statisticians working at the National Vegetable Research
Station5. Perhaps the best summary for the Nelder–Mead method is what 5 Nelder later notes that “Our address

(National Vegetable Research Station)
also caused surprise in one famous US
laboratory, whose staff clearly doubted if
turnipbashers could be numerate.” [3]

Nelder said himself during an interview [3]:

“There are occasions where it has been spectacularly good. . . Mathematicians
hate it because you can’t prove convergence; engineers seem to love it
because it often works.”

Nelder-Mead has many popular variants, one of which is the default
algorithm used in MATLAB’s fminsearch function. It does not require any

http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method
http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method


black-box policy optimization 115

knowledge of the derivatives or the analytic form of the function being
optimized, but it does expect deterministic functions.

Nelder-Mead works on an n-dimensional function by creating a simplex
of n + 1 points which it modifies to try to surround the optimum. At each
iteration, it evaluates the function at each of the vertices of the simplex and
follows some complicated rules to move the points until it shrinks the sim-
plex down on a local minima. The original version of the algorithm is not
guaranteed to converge.

The following is an overview of the rules used:

• Consider points along the line between the worst point and the (possibly
weighted) average of the other points

• Try to reflect the worst point about plane between other points

– If the reflected point is better than the second worst, but not better than
the best, replace the worst with the reflected point.

– If the reflected point is better than best point, compute a further ex-
panded point past the reflected point. If this point is better than the
reflection, replace the worst point with it, otherwise replace the worst
point with the reflection.

– If neither are better, consider contracting the simplex by shortening the
distances between the best point and the other points

Note: you should really consult 6 and other references if you were con- 6

sidering implementing this in anger as there are many variants of this algo-
rithm.

Even though it may not have good theoretical properties, in practice this
algorithm tends to be very effective. This approach can also be extended to
take 4 or 8 samples at each point on the simplex instead of just sampling
once. These methods (Nelder-Mead-4 / Nelder-Mead-8) can potentially
improve robustness to noise.

Cross-Entropy Method

Figure 10.1.1: The first iteration
of cross-entropy. The initial
distribution is a prior Gaussian
(blue) and the green Gaussian
is the one fitted to the elite set.

The Cross-Entropy Method 7 8 samples from a distribution, and then 7

8 See in particular Algorithm 4.1 of the
reference.

updates the distribution based on which samples scored the highest. This
method originated as an approach for importance sampling and has impacts
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in queuing theory as well as being useful as an optimization technique. It’s a
surprisingly effective brute force method.

The method, shown in Algorithm 19 and illustrated in Figure 10.1.1 starts
with a distribution over the parameter space, often a Gaussian, but it can be
any distribution. Then samples are taken from the distribution as points at
which to evaluate the function. Typically about 100 samples are taken. Then
the “elite set” is computed, which is the top 1− 5% of the samples. The pa-
rameters that make up the elite set are then used to create a new distribution.
The actual values of the elite set are ignored, only their parameters are used
to train a new distribution. Then the new distribution is sampled from and
the process repeats until the distribution settles in on a local optimum. The
parameters returned could be the mean of the final distribution, or one could
track the best value overall and use that as the final parameter set.

Algorithm 19: Cross entropy method
1: given: An initial distribution Dθ over the set of parameters
2: outputs: A final set of parameters θn

3: while not converged do
4: for i = 1 to k do
5: sample θi from Dθ

6: vi ← J(θi) {Run the simulator to obtain a value}
7: end for
8: E← ∅
9: for j = 1 to e do

10: i← argmaxi/∈E vi

11: E← E ∪ θi {Find the e best values to create the elite set}
12: end for
13: Dθ ← fit(E) {Fit a new distribution to the xj in the elite set}
14: end while

This method has an interesting set of guarantees, as it has nice exploration
property since it samples randomly at each step. 9 9

One possible modification is to mix the old and new distributions, such
as by linearly interpolating the mean and covariance in the case of Gaussians
and in general regularizing the learned distribution. Typically the interpola-
tion is weighted 70− 90% in favor of the new distribution. This modification
is useful to help avoid singular covariance matrices.

Another nice property of Cross-Entropy is that it can deal with irrelevant
or noisy features. If two features are related, their covariance in the distribu-
tion will be high.

There are, however, issues with these methods

• Inaccuracies in modeling the true distribution. If the actual distribution
is multi modal, then that can cause the covariance to keep growing to
accommodate the bimodal nature of the underlying distribution

• If the sampling is not done right, then there might be too few elements in
the covariance matrix. To fix this, some people try to increase the diago-
nals along the covariance by adding a ’regularizer’ term to the covariance
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matrix, i.e. a λI, or by linearly combining the distributions as mentioned
earlier.

• This method actually optimizes quantiles [2] rather than the actual ex-
pected values. Thus, if using a black box method, it will converge, but if a
stochastic policy method is used, it will not converge because of noise.

Black box methods usually must evaluate J many times, and thus work
well when evaluating J is cheap. However, this is almost never the case in
robotics. Their simplicity and robustness to incorrect modeling assumptions
(partial observability and difficult approximating value functions) make them
particularly appealing and often they can be used on a learned model of a
system to improve sampl efficiency. We study the use of learned models in a
later lecture.

10.2 Related Reading

[1] PEGASUS: A policy search method for large MDPs and POMDPs. Ng,
Andrew Y and Jordan, Michael

[2] The Cross-Entropy Method Optimizes for Quantiles. Goschin, Weinstein
and Littman

[3] Optimization stories. GrÃűtschel, Martin, ed. Dt. Mathematiker-Vereinigung,
2012.
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Policy Gradients

In this lecture, we will continue to consider the problem of directly learning
a policy including from sampled trajectories. We will focus on policy gra-
dient methods that use samples from the environment to get noisy gradient
estimates and then update policy. Policy gradient methods take advantage
of one important structure black box methods do not: the fact that we can
design our policy space such that we know the relationship between the
parameters of that policy space and the output actions. That is, the policy
search problem need not be entirely a black-box operation since even without
a model of the environment or cost functions as we still can have a model of
how our policy space works. 1 1 At least one of the authors, based on

disappointing experimental evidence,
had largely despaired of this advan-
tage translating into a reduction in the
amount of interaction required over
naive blackbox methods “A major
open issue within the field is the rela-
tive merits of the these two approaches:
in principle, white box methods lever-
age more information, but with the
exception of models, the performance
gains are traded-off with additional
assumptions that may be violated and
less mature optimization algorithms.
Some recent work ... suggest that
much of the benefit of policy search
is achieved by black-box methods.”
(Kober, Peters, Bagnell, 14). In recent
years, as policy classes have become
more sophisticated (i.e. deep CNN
based policies) with very large param-
eter sets, the benefit of this additional
structure has become important and the
methods described in this chapter have
at times become preferred to black box
search.

To take advantage of this approach, we need a method to relate the pa-
rameters of the policy class with the resulting actions. One of the simplest
methods to do so is computing derivatives: for sophisticated policy classes
this is often best done through automatic differentiation techniques. We
begin here by reviewing the most common automatic differentiation tech-
nique used in the learning literature commonly known as backpropagation
or reverse-mode automatic differentiation.

We demonstrate how to use this in a larger loop of policy optimization
later in the lecture. Before specifying the details of this approach, we will
review back-propagation and its use in neural networks and controls.

11.1 Back-propagation

A powerful way to describe many complex systems is as a composition of
interconnected modules described as a directed graph2. This makes it easier

2 Often called the computation graph in
the learning literature

to organize a complex system and debug the system by unit testing individ-
ual components. For example, robotics often leverages a “sense, act, plan”
paradigm, where each component is often studied and optimized separately.
However, modifying a single module can influence the overall system per-
formance in a complicated way due to the relationship between modules.
Back-propagation attempts to address this problem by offering a principled
method to calculate the cascaded effects of module parameters on overall
system performance. Back-propagation is also known as the adjoint method
and reverse-mode automatic differentiation in the control and optimization litera-
ture.

Back-propagation makes it possible to solve a large class of problems
that would be intractable using naive differentiation techniques or the use of
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forward mode auto-differentiation. One of the best known applications is train-
ing neural networks, which has led to dramatic results in computer vision
and natural language processing. 3 A common misunderstanding is that 3

back-propagation is specific to machine learning/neural network (aka deep
network) training. In fact, back-propagation can be used to compute gradients
for any differentiable function expressed as a graph of operations and this
general dynamic programming strategy for computing derivatives is quite
old. In particular, the same idea has been used widely in optimal control,
known as the adjoint method4. Just as back-propagation’s led to tremendous 4 A fine summary of the adjoint method

can be found here: http://www.argmin.
net/2016/05/18/mates-of-costate/

success in training neural nets, the adjoint method has enabled researchers to
tackle complex control problems with millions of control inputs. An elegant
example is the work “Fluid Control with the Adjoint Method” [1], where
the simulation of a human-shaped smoke cloud required over one million
control inputs. Naive derivative computation with this number of parameters
is nearly intractable, while backpropagation allows it to scale to real time
animation. As the backpropagation technique has become better understood
and more ubiquitous, we’ve entered a period of differentiable programming
5 where we can assemble sophisticated programs and their derivatives to 5 https://en.wikipedia.org/wiki/

Differentiable_programmingenable optimization of these programs.
We will first look at back-propagation as a general algorithm to compute

gradients, then we will see several examples including multi-layer neural
networks and the LQR problem. An excellent reference on the origins and
general backpropagation technique is 6. The book Deep Learning 7 provides a 6

7fine introduction in section 6.5.

Total vs. Partial Derivatives

In dealing with compositions of functions, a crucial distinction must be made
between two types of derivatives, total derivatives and partial derivatives.
The partial derivative of a function describes the change in output resulting
from a change in direct dependencies– i.e. a module has a set of inputs and
we evaluate how the output of the module changes in terms of these inputs.
The total derivative of a function describes the change of the output resulting
from all dependencies, direct and indirect. For instance, in a control problem,
a module describing the result of dynamics at time time t, xt+1 may have no
direct dependence on a control ut−5 at time step t− 5 and hence has partial
derivative of 0. However, there is a potentially non-0 total derivative of that
output in terms of ut−5, as this control effects the output, albeit indirectly.

In a sense, partial derivatives are “syntactic” and total derivates are semantic,
representing the complete effect of varying a single parameter or input on a
resulting computation.

The Chain Rule

In other terms, the partial derivative does not account for the composition
but rather direct inputs, while the total derivative does. Backpropagation is
effectively a dynamic programming means to turn manually specified partial
derivatives into automatic computation of total derivatives.

Before diving in and solving more sophisticated problems using back-
propagation, let’s review some basic calculus starting with the chain rule of
calculus. First, let us consider the simplest case where x ∈ R is a real num-

http://www.argmin.net/2016/05/18/mates-of-costate/
http://www.argmin.net/2016/05/18/mates-of-costate/
https://en.wikipedia.org/wiki/Differentiable_programming
https://en.wikipedia.org/wiki/Differentiable_programming
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ber. Let f and g be two differentiable functions that map R to R. Suppose
that y = g(x) and z = f (y) = f (g(x)). Then, the chain rule tells us,

dz
dx

=
dz
dy

dy
dx

. (11.1.1)

The chain rule can further generalized to the case when x ∈ Rn and
y ∈ Rm are vectors8. Let f : Rm → R and g : Rn → Rm be two differentiable 8 In fact, the chain rule can be general-

ized to the case of “tensors”. The use
of this phrase in deep learning doesn’t
imply the geometric meaning of math-
ematics, but rather simply refers to a
multi-dimensional array of numbers.
See

functions. As before, suppose that z = f (g(x)). Then, we have,

∂z
∂xi

=
m

∑
j=1

∂z
∂yj

∂yj

∂xi
. (11.1.2)

In vector notation, we rewrite the above equation as,

∇x z =

(
∂y
∂x

)>
∇y z, (11.1.3)

where ∇x z = [ ∂z
∂x1

, . . . ∂z
∂xn

]> and ∇y z = [ ∂z
∂y1

, . . . ∂z
∂ym

]> are the gradient of z
with respect to x and y, respectively, and

∂y
∂x

=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn

...
...

. . .
...

∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


is the Jacobian matrix of the function g.

Block Diagrams

Now that we are equipped with the necessary mathematical tools to compute
gradients, let us take one step further and look at how we can represent how
the modules are interconnected in a system using a block diagram.

In the language of block diagram, each module or operation is represented
by a block, whereas the arrows between blocks indicate variables that are
inputs to/outputs of the operations. For example, the system considered in
the previous section can be represented as Figure 11.1.1.

Figure 11.1.1: The block di-
agram representation of the
simple example.Given a block diagram and a variable x in the diagram, we say a variable

y is a parent9 of x if there exists a block f such that x is the output of f and 9 Here we abuse the definition of
parents by denoting an “edge” as
a parent of another “edge” in the
diagram. Same for children.

y one of the inputs. Note that a variable may have multiple parents since
there can be multiple inputs to block f . We denote the set of variables that
are parents of x as Parents(x). Conversely, we call a variable y as a child of x
if x is a parent of y, i.e., there exists a block g such that y is the output of g
and x is one of the inputs. We denote the set of variables that are children of
x as Children(x).

We say a block diagram is acyclic if it has no cyclic paths. For back-
propagation, we assume that the associated block diagram is acyclic10, and 10 Recurrent neural networks and closed

loop control systems (with a finite
horizon) can be represented by an
acyclic diagram through an operation
called unfold. We will discuss it later.

there exists a topological ordering (over variables) such that the output of the
system is the last one in the list. In our case, we assume that the output of
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the system is a scalar J ∈ R. It could be the value of the loss function if we
are training a neural network, it can also be the total cost of the trajectory(ies)
if we are optimizing a policy.

Recall that we are interested how the output J is changed when we
change a variable x in the diagram, which is precisely the gradient ∇x J.
By the chain rule, we have,

∇x J = ∑
y∈Children(x)

(
∂y
∂x

)>
∇y J (11.1.4)

Examples

To make things more concrete, let us look at some examples.

• Linear

Figure 11.1.2: The block dia-
gram of the linear module.

A linear module takes two inputs x and w to produce output y = f (x, w) =

w> x. Assume that the system is associated with an overall output J =

L(y). Then, we have, (
∂y
∂x

)>
= w,

(
∂y
∂w

)>
= x (11.1.5)

∇x J =
(

∂y
∂x

)>
∇y J =

dL
dy

w (11.1.6)

∇w J =
(

∂y
∂w

)>
∇y J =

dL
dy

x (11.1.7)

• Squared Loss

Figure 11.1.3: The block di-
agram of the squared loss
module.

A squared loss module takes two inputs x and y and produces output z =

f (x, y) = 1
2 (y − x)>(y − x) = 1

2‖y − x‖2. Assume that the system is
associated with an overall output J = L(z). Then, we have,(

∂z
∂x

)>
= x− y,

(
∂z
∂y

)>
= y− x (11.1.8)

∇x J =
(

∂z
∂x

)>
∇z J =

dL
dz

(x− y) (11.1.9)

∇y J =
(

∂z
∂y

)>
∇z J =

dL
dz

(y− x) (11.1.10)

• Branch
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Figure 11.1.4: The block dia-
gram of the branch module.

A branch module takes in one input x and produces two outputs y1 =

f1(x) = x and y2 = f2(x) = x. Assume that the system is associated with
an overall output J = L(y1, y2). Then, we have,(

∂y1
∂x

)>
=

(
∂y2
∂x

)>
= I (11.1.11)

∇x J =
(

∂y1
∂x

)>
∇y1 J +

(
∂y2
∂y

)>
∇y2 J = ∇y1 J +∇y2 J (11.1.12)

• Addition

Figure 11.1.5: The block dia-
gram of the plus module.

An addition module takes in two inputs x and y and produces output
z = f (x, y) = x + y. Again, assume that the system is associated with an
overall output J = L(z). Then, we have,(

∂z
∂x

)>
=

(
∂z
∂y

)>
= I (11.1.13)

∇x J =
(

∂z
∂x

)>
∇z J = ∇z J (11.1.14)

∇y J =
(

∂z
∂y

)>
∇z J = ∇z J (11.1.15)

Back-propagation: A Dynamic Programming Algorithm

Although given any variable x in the diagram, we can calculate the gradient
of the output J with respect to the variable x by recursively applying the
chain rule. However, when we are training a neural network or solving an
optimal control problem, we oftentimes want to compute the gradient with
respect to a large set of variables, such as weights in every layer of the neural
network, or the control input at every time step. The question then becomes,
can we do something better than calculating the gradients one by one? The
answer is yes!

To see this, let us look back at the linear module example. When we
calculate the ∇x J and ∇w J in (11.1.6) and (11.1.7), we actually use the value
of ∇y J for multiple times. Therefore, if we can somehow store the previously
calculated gradients, and order the variables in such a way that we can
make use of the gradients computed previously, then we can save a lot of
computation by reusing these gradients. This idea of dynamic programming
is the main idea behind back-propagation.
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Recall from the previous part that the gradient with respect to a variable
x can be computed based on the gradient with respect to all its children
y ∈ Children(x),

∇x J = ∑
y∈Children(x)

(
∂y
∂x

)>
∇y J.

Based on this observation, we see that in order to reuse the previously
computed gradient, we need to order the variables backwards – from the
output to the inputs, from the parents to the children. Then, we need to
backward propagate the gradients from the children to the parents, this is
where the name back-propagation comes from. 11 11 This dynamic programming order-

ing might remind you a bit of value
iteration from the earliest lectures. It
should! If you think of the output of
the final module as the value function,
backpropagation is simply doing value
iteration with a local, linear approxima-
tion of the value function. As such, it’s
essentially value-iteration in disguise.

The “Learning” Algorithm

Now, let us try to do something useful with the back-propagation algorithm.
Assume that there are a set of input variables in the diagram called param-
eters that we are free to choose. We denote these parameters as {wi}i. Ex-
amples of these parameters include weights in the neural networks, control
inputs and initial conditions, etc. Conversely, there are other input variables
whose values are given and we have no control over, such as the inputs to
the neural network, the system dynamics, etc. Our goal is to find a set of
parameters such that the value of some scalar output J is minimized (loss for
training neural networks, cost for optimal control problems, etc), i.e.,

{w∗i }i = arg min
{wi}i

J (11.1.16)

We are interested in designing a learning algorithm that updates param-
eters of a system to reduce the value of J. One way to perform the gradient
descent algorithm,

wk+1
i = wk

i − α∇wi J. (11.1.17)

where α > 0 is the learning rate. Note that here the gradients can be calcu-
lated by the back-propagation algorithm.

In summary, there are three main steps in the learning algorithm: forward-
propagation, back-propagation, and gradient descent. Forward propagation con-
sists of generating all module outputs by running the system “forward”
(from the inputs to the output). This is necessary for recursively evaluating
all the partial derivatives in the back propagation step, as detailed in the
previous section. Finally, once all gradients have been calculated, we take a
gradient descent step. Then we repeat the whole process until convergence.
12 12 More sophisticated algorithms than

gradient descent are at times used
that automatically scale individual
directions or apply approximations to
a second order method. See for more
details.

Ian Goodfellow, Yoshua Ben-
gio, and Aaron Courville. Deep
Learning. MIT Press, 2016.
http://www.deeplearningbook.org

11.2 System Examples

Below are examples of modular systems where back-propagation can be
used.

Linear Regression Example

We can describe a linear regression by a linear module cascaded with a
squared loss module, as shown below. Linear module takes two inputs x

http://www.deeplearningbook.org
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and w, and output z = w>x. Squared loss module takes inputs z and y, and
output J = 1

2 (z − y)>(z − y). The system takes inputs x, y, and w, where
x corresponds to the data, y are the respective regression targets, and w is
the regression parameter we can control. Our goal is to minimize the loss
z. Back-propagation is usually not used here because it is not difficult to
calculate the total derivatives directly.

Linear	  Module	  
	  
	   Loss	  Module	  

	  
	  

w

y

xin x1

x2f(x) = wT x

f(x) =
1

2
||y � x||2

Figure 11.2.1: Linear regression
represented as a cascade of
modules.

Neural Networks

A neural network consists of layered linear modules and nonlinear firing
units. Traditionally, the firing units are sigmoid functions such as hyperbolic
tangent or the logistic function. Recently, the nonlinear rectifier function
shown below has come into common practice. The sigmoid functions have
small linear support regions between saturation, which require the inputs
to be scaled properly. The rectifier does not suffer from these issues, and is
computationally simpler, allowing for large neural networks to be applied to
a variety of data.

In deep, multi-layer networks, cascading makes it difficult to directly de-
termine total derivatives for all the parameters. Utilizing the back-propagation
algorithm, however, we can efficiently tune the linear module weight param-
eters.

y

x2

Squared	  Loss	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

1

2
||y � x||2

	  
	  
	  
	  
	  

Linear	  

Rec0fier	  	  
	  
	  
	  
	  
	  
	  

wT x
xi

wi

xi+1

i = 1 . . . N

xin

Figure 11.2.2: A neural net.

Let J be the output of the squared loss function. Then, we have,

∇xN+1 J = xN+1 − y. (11.2.1)
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By the chain rule, for any i = 1, . . . , N, we have,

∇xi J =
(

∂xi+1
∂xi

)>
∇xi+1 J (11.2.2)

∇wi J =
(

∂xi+1
∂wi

)>
∇xi+1 J (11.2.3)

We can use these relations to recursively calculate all the gradients of our
system using only partial derivatives and back propogating gradients from
later modules in the system. This process begins at the output.

Note that there are numerous variations on neural network architectures
and update algorithms for domain-specific applications. Variations include
pooling, probabilistic drop-out, autoregressive loss, and convolution layers,
etc.

11.3 Relating LQR and Backprogation

By now, we have seen a few “backwards” algorithms in this class, the back-
propagation algorithm that we just saw and the value-iteration/Riccatti
recursion used for the LQR problem. One natural question one may ask
is whether there are some connections between these. In fact, one can find
multiple connections.

DDP, Model-based optimization and second-order backpropagation

Perhaps the most natural policy gradient approach is to consider optimizing
the parameters of a policy where we can completely specify the dynam-
ics and cost function as modules in a computation graph as well. In this
complete, model-based case (similar to that of the LQR setting), we can use
gradient descent to optimize parameters of a policy.

If we apply backpropagation to such a chain of modules (rather than a
general Directed Acyclic Graph), backprogation can be understood as mak-
ing a linear approximation of a value function. In this viewpoint, DDP can be
understood as making a second order approximation of the value function.
One can develop more sophisticated variants of DDP/iLQR that work on
general directed graphs that can be seen as second order generalizations of
backpropagation. 13. 13

Rederiving LQR with Back-propagation

Another connection is that we can think about the Ricatti back-up equation
as coming about from following the same dynamic programming computa-
tional pattern as backpropagation, but propagating analytic derivatives.

Recall from the earlier lecture that the LQR problem is stated as the fol-
lowing,

min
u0,...,uT−1

T−1

∑
t=0

(
xt
>Qxt + ut

>Rut

)
(11.3.1)

s.t. xt+1 = Axt + But, ∀t = 0, . . . , T − 2 (11.3.2)

where xt+1 = Axt + But is the system dynamics, and xt
>Qxt + ut

>Rut is the
instantaneous cost at each time step.
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First, let us rewrite the LQR problem into a block diagram. The block
diagram of the LQR problem is shown in Figure 11.3.1. Here we introduce a
quadratic cost module at each time step and aggregate them into a total cost
J.

Figure 11.3.1: Finite horizon
LQR realized by a block dia-
gram.

First, we have,

∇uT−1 J = 2R uT−1, (11.3.3)

∇xT−1 J = 2Q xT−1. (11.3.4)

By the chain rule, for any t = 0, . . . , T − 2, we have,

∇xt J =
(

∂J
∂xt

)>
+

(
∂xt+1

∂xt

)>
∇xt+1 J

= 2Q xt + A>∇xt+1 J (11.3.5)

∇ut J =
(

∂J
∂ut

)>
+

(
∂xt+1
∂ut

)>
∇xt+1 J

= 2R ut + B>∇xt+1 J (11.3.6)

With the gradient we get from back-propagation, one can certainly run
gradient descent for a set of controls {ut}T−1

t=0 . The gradient descent process
does not require a matrix inversion as we saw earlier, but as a cost, it requires
possibly many gradient descent steps and does not provide a control policy
but rather optimizes an open-loop trajectory. This can also be viewed as a
policy search approach to the LQR problem.

Note, however, that we can also solve for optimal input using these gra-
dients since we know that the problem is convex and we have a closed-form
expression of those gradients – we can just set the gradients to zero!

• At time step T − 1, by setting ∇uT−1 J = 0, we have,

2R uT−1 = 0 ⇒ uT−1 = 0. (11.3.7)

Let VT−1 = Q, we have,

∇xT−1 J = 2Q xT−1
.
= 2VT−1 xT−1. (11.3.8)

• At time step T − 2, we have,

∇uT−2 J = 2R uT−2 + B>∇xT−1 J

= 2R uT−2 + 2B> VT−1 xT−1

= 2R uT−2 + 2B> VT−1 (A xT−2 + B uT−2)

= 2(R + B> VT−1 B) uT−2 + 2B> VT−1 A xT−2

(11.3.9)
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By setting ∇uT−2 J = 0, we have,

uT−2 = −(R + B> VT−1 B)−1 B> VT−1 A xT−2
.
= KT−2 xT−2. (11.3.10)

Meanwhile,

∇xT−2 J = 2Q xT−2 + 2A>∇xT−1 J

= 2Q xT−2 + 2A> VT−1 (A + B KT−2) xT−2

= 2(Q + (A + B KT−2)
> VT−1 (A + B KT−2)

− K>T−2 B> VT−1 (A + B KT−2)) xT−2

= 2(Q + (A + B KT−2)
> VT−1 (A + B KT−2) + K>T−2 R KT−2) xT−2

.
= 2VT−2 xT−2.

(11.3.11)

• By repeating the process, we get,

Kt−1 = −(R + B> Vt B)−1 B> Vt A

Vt−1 = Q + (A + B Kt−1)
> Vt (A + B Kt−1) + K>t−1 Rt Kt−1

(11.3.12)

This is precisely the Riccati equation!
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11.4 Policy Gradient Methods

In the standard RL setting, we do not have access to differentiable modules
that describe the dynamics (and often don’t have access to the cost function
in this form either). Instead, we can sample trajectories, or perhaps have
access to a somewhat richer sample based model as described in earlier lec-
tures. Value function methods like Q-learning and SARSA use information
from every transition (s, a, r, s′) in every trajectory, while black-box policy
optimization methods only look at the total reward of the trajectories ig-
noring all structure to the reinforcement learning problem. It’s natural to
ask if we can use more structure without the difficulties of value function
approximation.

As we have seen earlier in the lecture, if the environment model and the
reward function are known, we can compute the policy gradient conveniently
using the back-propagation algorithm. However, in reinforcement learning,
we often care about the case when we don’t have access to the environment
model and/or the reward function. Policy gradient methods seek to estimate
the policy gradients from trajectories without access to the environment
model and the reward function.

Before we dive in to the details, we should consider whether a gradi-
ent exists for a certain policy class. This can be interpreted as a continuity
condition of the mapping from the parameters in the policy class to the tra-
jectories. This is clearly false for discrete action spaces and deterministic
policies, since an infinitesimally small change in parameters can drastically
change the policy and hence the trajectories. Therefore, in this lecture, we
consider a class of stochastic policies parameterized by θ, πθ : s 7→ πθ(a|s).
Under mild assumptions about the environment, we can safely assume that
the policy gradient always exists for this policy class since stochastic policies
“smooth out” the problem. 14 14 The general strategy of lifting from

a discrete space to a distribution to
ensure continuity is used throughout
machine learning and optimization.
Consider, [Arora et al., 2012] as an
excellent introduction to the exponen-
tiated gradient approach to solving
problems.

Let ξ denote a trajectory of states and actions, ξ = (s0, a0, . . . , sT−1, aT−1).
We define the total reward of the trajectory ξ as,

R(ξ) =
T−1

∑
t=0

r(st, at).

Our goal is to find the parameters that produce a policy that maximizes
the expected total reward of the trajectories,

J(θ) = Ep(ξ|θ)[R(ξ)] = Ep(ξ|θ)

[
T−1

∑
t=0

r(st, at)

]
,

where p(ξ|θ) is the probability of the trajectory ξ given the policy parameter-
ized by θ, which, we will see later, is also dependent on the transition model
of the environment.

To find the optimal policy, we compute the policy gradient by taking the
derivative with respect to θ.

∇θ J = ∇θ Ep(ξ|θ) [R(ξ)]

= ∇θ ∑
ξ∈Ξ

p(ξ|θ) R(ξ),

where Ξ denotes the set of all possible trajectories. In the case when the
state and/or action space is continuous, the sum should be replaced by an
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integral. The derivation will remain the same for integrals, although some
steps would require additional justification15. 15 For example, the dominated conver-

gence theorem needs to be invoked
in order to swap the integral with the
gradient operator in the next step.

Since R(ξ) is the total reward of a given trajectory ξ, it has no dependence
on θ. Therefore,

∇θ J = ∑
ξ∈Ξ

(∇θ p(ξ|θ)) R(ξ). (11.4.1)

However, we cannot compute the gradient with eq. (11.4.1) because it
requires us to evaluate the gradient for all possible trajectories. Instead, we
want to obtain at least an estimate of the policy gradient using samples of
trajectories. Therefore, we want to express the gradient as an expectation
over probability p(ξ|θ) – the moment we do that, we can use the law of large
numbers to draw samples from the distribution and estimate the expectation.
Therefore, we use a simple trick,

∇θ J = ∑
ξ∈Ξ

p(ξ|θ)
p(ξ|θ) (∇θ p(ξ|θ)) R(ξ)

= Ep(ξ|θ)

[∇θ p(ξ|θ)
p(ξ|θ) R(ξ)

]
.

By the chain rule, we have, ∇θ log (p(ξ|θ)) =
∇θ p(ξ|θ)

p(ξ|θ) . So, we have an
elegant expression of the policy gradient as an expectation,

∇θ J = Ep(ξ|θ) [∇θ log (p(ξ|θ)) R(ξ)] . (11.4.2)

This is sometimes called the likelihood ratio policy gradient. The likelihood
ratio policy gradient can be interpreted as increasing the (log) probability
of the trajectories with high reward and decreasing the (log) probability of
the trajectories with low reward. To see this, consider a single trajectory ξ.
Imagine that R(ξ) is a large positive number, then if we do gradient ascent
with respect to the total reward J, we are in some sense doing gradient ascent
with respect to log (p(ξ|θ)) according to eq. (11.4.2). Conversely, if R(ξ) is a
large negative number, we are performing gradient descent with respect to its
log probability in some sense.

Note, however, that we still can not compute the policy gradient using
the above equation because it requires us to evaluate ∇θ log p(ξ|θ) in the
expectation, yet we do not know the transition model p(st+1|at, st).

However, we will see that it is not a problem for policy gradient methods.
If we assume the Markov property, we have,

p(ξ|θ) = p(s0)

(
T−2

∏
t=0

p(st+1|at, st)

)(
T−1

∏
t=0

πθ(at|st)

)
.

Then, we have,

∇θ log p(ξ|θ) = ∇θ log p(s0) +

(
T−2

∑
t=0
∇θ log p(st+1|at, st)

)

+

(
T−1

∑
t=0
∇θ log πθ(at|st)

)
.

However, log p(s0) and log p (st+1|st, at) do not depend on θ, so the gradi-
ents with respect to these terms are zero. Hence,

∇θ J = Ep(ξ|θ)

[(
T−1

∑
t=0
∇θ log πθ (at|st)

)
R(ξ)

]
.
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Notice that we don’t know and can’t control the system dynamics, but
by formulating the problem this way, we don’t need to – we have control
over the policy class we choose, and thus can easily compute an unbiased
gradient estimate. 16 For example, we can use the back-propagation algorithm 16 Often with outrageously high sample

variance however.that we saw last week to compute the gradient ∇θ log πθ (at|st).
As mentioned earlier, we can now use the law of large numbers to esti-

mate this expectation,

∇̃θ J =
1
N

N

∑
i=1

[(
T−1

∑
t=0
∇θ log πθ

(
a(i)t |s

(i)
t

))
R(ξ(i))

]
. (11.4.3)

By the law of large number, we know that the estimated gradient in eq.
(11.4.3) is an unbiased estimate of the true policy gradient. Therefore, we can
run stochastic gradient ascent with this estimated gradient. This forms the
basis of the REINFORCE (Algorithm 20) algorithm (version 1, we will show
some improvements soon).

Algorithm 20: The REINFORCE algorithm.

Start with an arbitrary initial policy πθ

while not converged do
Run simulator with πθ to collect {ξ(i)}N

i=1
Compute estimated gradient

∇̃θ J =
1
N

N

∑
i=1

[(
T−1

∑
t=0
∇θ log πθ

(
a(i)t |s

(i)
t

))
R(ξ(i))

]

Update parameters θ ← θ + α ∇̃θ J
return πθ

In step 1, we run the simulator using the current policy to collect training
sequences. In step 2, we approximate the expectation by the sample mean.
Step 3 is the update rule of the algorithm with α being the step size. The
algorithm is then repeated until convergence or until you are bored.

An example: Tetris

We will use Tetris as an example to show how you might choose your policy
function πθ(a|s) and how you would compute ∇θ log πθ(a|s). Suppose we
have some features representing the state-action pair of the Tetris game. For
instance f1 =the number of “holes” after the placement, f2 =the height of
the highest column after the placement, etc. Due to the log in eq. (11.4.3), a
convenient stochastic policy is,

πθ(a|s) =
exp

(
θ> f (s, a)

)
∑
a′

exp
(
θ> f (s, a′)

) .

This is sometimes called the Boltzmann distribution or Gibbs distribution.
The gradient of the probability distribution can be computed by any

method, e.g. using back-propagation. However, it is fairly simple to solve
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analytically:

∇θ log πθ(a|s) = ∇θ

[
θ> f (s, a)− log ∑

a′
exp

(
θ> f (s, a′)

)]

= f (s, a)−
∑a′ f (s, a′) exp

(
θ> f (s, a′)

)
∑a′ exp

(
θ> f (s, a′)

)
= f (s, a)−∑

a′
f (s, a′)πθ

(
a′|s
)

= f (s, a)− Eπθ(a′ |s)
[

f (s, a′)
]

(11.4.4)

This is essentially computing the difference between the feature at state
s and action a versus the expectation over all actions for that state that we
could have chosen, in a way the “average” feature. Assume that we observe
that feature i for action a is larger than the average over all actions. According
to eq. (11.4.4), if performing action a at state s produces a trajectory that has
high reward, we will increase the value of θi to upweight this particular fea-
ture. Because it seems that this feature is “helpful” for getting high rewards.
On the other hand, if this state-action pair produces low reward trajectories,
we may conclude that feature i is “harmful”. So we make the corresponding
parameter θi to be small or negative to reflect this observation.

11.5 Reducing Variance

Although the estimated gradient in eq. (11.4.3) can in theory provide an
unbiased estimate, it suffers from high variance. In order to see this, recall
that the likelihood ratio policy gradient increases the probability of the tra-
jectories with high reward and decreases the probability of the trajectories
with low reward. However, imagine when every trajectory has a very high re-
ward – although some are higher than others. Then, since we only has finite
number of samples at each iteration, the estimated gradient will push the
probability of all these trajectories higher (if possible) since the total reward
is high (and hence make the probability of other trajectories lower). How-
ever, the algorithm has no idea about the reward of trajectories compared to
other trajectories. Therefore, we can imagine that the estimated gradients are
pointing in different directions at each iteration. In fact, without making the
modifications introduced in this part, the REINFORCE algorithm performs
poorly compared to “black-box" approaches.

One simple modification to reduce the variance is to take advantage of
causality – the actions selected now cannot affect past rewards.

Figure 11.5.1: A trajectory of
states, actions and rewards. We
consider changing the action at
time t in order to get a better
expected future reward.
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If we consider a trajectory of states and rewards, we want to change the
action at time t to maximize expected reward. Intuitively, we know that
changing the action at time t cannot affect the rewards obtained in the past,
since we have already received them. Thus, we can represent our expected
reward as only the future reward.

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0

(
∇θ log πθ(at|st)

(
t−1

∑
t′=0

r(st′ , at′ ) +
T−1

∑
t′=t

r(st′ , at′ )

))]

= Ep(ξ|θ)

[
T−1

∑
t=0

(
∇θ log πθ(at|st)

T−1

∑
t′=t

r(st′ , at′ )

)]
,

(11.5.1)

where ∑T−1
t′=t r(st′ , at′ ) is sometimes called future reward or reward-to-go. We

can use this idea to remove the dependence of past rewards from the calcula-
tion of our gradient.

One can reduce the variance even further by introducing baselines for the
expected total rewards. Recall that one of the reasons for the high variance is
that the algorithm does not know how well the trajectories perform compared
to other trajectories. Therefore, by introducing a baseline for the total reward
(or reward to go), we can update the policy based on how well the policy
performs compared to a baseline. The variance can hopefully be reduced if
the baseline approximates the average performance of the trajectories. But
how do we know that whether the estimated gradient still makes sense?

Let’s first take a look at the expectation Ep(ξ|θ)[∇θ log p(ξ|θ)b]. We have,

Ep(ξ|θ)[∇θ log p(ξ|θ) b] = ∑
ξ∈Ξ
∇θ p(ξ|θ) b

= ∇θ

(
∑

ξ∈Ξ
p(ξ|θ)

)
b

= (∇θ 1) b = 0.

(11.5.2)

Therefore, the estimated policy is still unbiased if we introduce a baseline
for the total reward (or reward to go). Note here that the above equation
holds as long as b does not depend on θ, hence b can potentially be a func-
tion of the state, i.e. b = b(st).17 In fact, a common choice of baseline is the 17 However, some additional effort is

needed to show that a time-dependent
baseline actually works, including
expanding p(ξ|θ) in the expectation as
a product of the transition probability
and the policy.

value function or some estimate of the value function.
Putting everything together, we can generate another policy gradient

expression,

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0

(
∇θ log πθ(at|st)

(
T−1

∑
t′=t

r(st′ , at′ )− b(st)

))]
, (11.5.3)

We estimate the above policy gradient as

∇̃θ J =
1
N

N

∑
i=1

T−1

∑
t=0

(
∇θ log πθ(a(i)t |s

(i)
t )

(
T−1

∑
t′=t

r(s(i)t′ , a(i)t′ )− b(s(i)t )

))
.

(11.5.4)

This can give us an unbiased estimate of the policy gradients with lower
variance.
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11.6 Eligibility Traces

Conveniently, the approach described above can be effectively implemented
with a simple infinite impulse response filter, rather than by remembering
entire trajectories. To lighten notation, consider the case when no baselines
are introduced, i.e. b ≡ 0.

Given a trajectory, we can introduce an iteratively computed eligibility
vector,

et = et−1 +∇θ log πθ(at|st)

Note then that,

et · r(st, at) =
t

∑
t′=0
∇θ log πθ(at′ |st′ ) r(st, at).

We will see that the gradient then is just a running sum of the expected
future rewards over all visited states at each time-step,

∆t = ∆t−1 + et · r(st, at).

If we expand this out, we can see that it is the same as gradient calculated
by the likelihood ratio method.

∆t = ∇θ log πθ(a0|s0) r(s0, a0) +
1

∑
t=0
∇θ log πθ(at|st) r(s1, a1)+

· · ·+
T−1

∑
t=0
∇θ log πθ(at|st) r(sT , aT)

=
T−1

∑
t=0
∇θ log πθ(at|st)

T−1

∑
t′=t

r(st′ , at′ )

11.7 REINFORCE

The REINFORCE algorithm uses the eligibility trace to calculate the gradient
update. We start off with a set or parameters and several trajectories gath-
ered by forward simulating the policy generated by those parameters. We
can then use the eligibility trace to calculate the gradient and get a new set
of parameters. We add a discount factor, γ, to manage the general class of
infinite horizon discounted problems.

Algorithm 21: REINFORCE Algorithm
1: e = 0
2: ∆ = 0
3: for all t do
4: e← γ e +∇θ log πθ(at|st)

5: ∆← ∆ + 1
t+1 [r(st, at) · e− ∆]

6: end for

The resulting ∆t+1 is a noisy estimate of the gradient. We can either
compute ∆t+1 several times to get a less noisy estimate, or we can move a
small amount using the noisy estimate.
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11.8 The Policy Gradient Theorem

The REINFORCE algorithm calculates the gradient using expected future
reward as determined by a trajectory.

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0
∇θ log πθ(at|st)

T−1

∑
t′=t

r(st′ , at′ )

]

We can instead replace the the estimate of future reward ∑T−1
t′=t r(st′ , at′ )

with the action value Qπθ , which by definition gives us the expected future
reward.

∇θ J = Ep(ξ|θ)

[
T−1

∑
t=0
∇θ log πθ(at|st) Qπθ (st, at)

]
We can update the gradient rule to take the expectation over the distribu-

tion of states rather than the expectation over the trajectories, this leads to the
Policy Gradient Theorem.

∇θ J = Es∼dπθ (s), a∼πθ(a|s) [∇θ log πθ(a|s)Qπθ (s, a)] (11.8.1)

Here, dπθ (s) is the distribution of states under policy πθ , i.e., the fraction
of time spent in state s,

dπθ (s) =
1
T

T−1

∑
t=0

pπθ (s, t),

where pπθ (s, t) is the probability that state s is visited at step t under policy
πθ .

The policy gradient theorem states that the gradient of average reward
under a policy πθ parametrized by θ is given by

∇θ J = Edπθ (s)Eπθ(a|s) [∇θ log(πθ(a|s) Qπθ (s, a)] (11.8.2)

The expectations are with respect to the distribution dπθ (s) of states given
a policy πθ and the actions taken under the policy πθ given the state s. We
can prove that, for the value function Vπθ (s) is only a function of the state s,
it can viewed as a baseline as we saw above. Thus, Eq. 11.8.2 is equal to:

∇θ J = Edπθ (s)Eπθ(a|s)
[
∇θ log(πθ(a|s) (Qπθ (s, a)−Vπθ (s))

]
, (11.8.3)

where Aπθ (s, a) = Qπθ (s, a)− Vπθ (s) is referred to as the advantage of action
a at state s under policy πθ . So why is this true?First, consider the inner
expectation. Because Vπθ does not depend on a, this is equivalent to,

Eπθ(a|s) [∇θ log(πθ(a|s)Vπθ (s)] = Vπθ (s) Eπθ(a|s) [∇θ log(πθ(a|s)] . (11.8.4)

That leaves ∇θ log(πθ(a|s) in the expectation. Intuitively that must be
equal to zero because the probability distribution πθ must sum to one, so the
sum over all changes must be equal to zero. We show more explicitly below
that this is indeed the case. We expand (Eq. 11.8.4) into sums over the states



136 draft: modern adaptive control and reinforcement learning

and actions. We can show that,

Eπθ(a|s) [∇θ log(πθ(a|s)] = ∑
a∈A

πθ(a|s)∇θ log(πθ(a|s))

= ∑
a∈A

πθ(a|s) ∇θπθ(a|s)
πθ(a|s)

= ∑
a∈A

∇θπθ(a|s)

= ∇θ

(
∑

a∈A

πθ(a|s)
)

= ∇θ 1 = 0.

(11.8.5)

Through linearity of expectation, we have,

Edπθ (s)Eπθ(a|s)
[
∇θ log(πθ(a|s)Vπθ (s)

]
=Edπθ (s)

[
Vπθ (s) Eπθ(a|s)

[
∇θ log(πθ(a|s)

]]
=Edπθ (s) [V

πθ (s) · 0] = 0.

(11.8.6)

Finally,

∇θ J = Edπθ (s)Eπθ(a|s)
[
∇θ log(πθ(a|s)Qπθ (s, a)

]
= Edπθ (s)Eπθ(a|s)

[
∇θ log(πθ(a|s) (Qπθ (s, a)−Vπθ (s))

]
= Edπθ (s)Eπθ(a|s)

[
∇θ log(πθ(a|s)Aπθ (s, a)

] (11.8.7)

Intuitively, this shows that the algorithm wants the advantage of the
action to be high, and wants to choose actions that are correlated with the
advantage being high. It adjusts the policy by making small changes towards
Q values that are higher than the average.

The policy gradient theorem connects estimating the gradient ∇θ J with
estimating Qπθ or Aπθ . For example,we can estimate Qπθ with some param-
eterized function Qπθ

φ using Approximate Dynamic Programming methods like
Fitted Q-Iteration or an advantage estimator Aπθ

φ , to approximate the advan-
tage function Aπθ (s, a). Also, we can use samples trajectories under policy
πθ to estimate the expectation in Eq. (11.8.7), which results in an estimated
policy gradient,

∇̃θ J =
1
N

N

∑
i=1

(
∇θ log πθ(ai|si) Aπθ

φ (si, ai)
)

. (11.8.8)

This leads to a class of methods called Actor–Critic Methods. Actor–Critic
methods learn a actor (the policy) and a critic simultaneously. The critic
produces the estimate of some value function (e.g., state-value function,
action-value function, advantage function, etc.) for bootstrapping (updating
the value function estimate for a state from the estimated values of other
states). By introducing the critic, the variance of the gradient estimate can be
further reduced. Many popular policy gradient algorithms, including TRPO,
PPO and DDPG, adopt the actor–critic architecture.

Examples

Let us consider a simple example of the actor-critic algorithm. Say we have
two actions that we can take from a given state and one feature for the state
s. One of our actions a0 is bad, while the other one a1 is good.
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We use the Boltzmann distribution that we have seen in the previous
example,

πθ(a|s) = exp[θ> f (s, a)]
∑a′ exp[θ> f (s, a)]

.

Suppose that the features of our state and the two actions are f (s, a0) = 3
and f (s, a1) = 1.

Let’s say our current value of the parameter θ is θ = 1. Then, the probabil-
ities for taking each action are,

πθ(a0|s) =
exp[θ> f (s, a0)]

exp[θ> f (s, a0)] + exp[θ> f (s, a1)]
=

e3

e3 + e
=

e2

e2 + 1
≈ 0.88,

πθ(a1|s) =
exp[θ> f (s, a1)]

exp[θ> f (s, a0)] + exp[θ> f (s, a1)]
=

e
e3 + e

=
1

e2 + 1
≈ 0.12,

where e ≈ 2.71828 is the base of the natural logarithm
We then get an estimate of the future reward, possibly through our critic:

Qπ(s, a0) = 1 and Qπ(s, a1) = 100.
We have already seen previously that we can compute the derivative of

the log probability as follows:

∇θ log πθ(a|s) = f (s, a)− Eπθ(a′ |s)[ f (s, a′)],

where,
Eπ(a′ |s)[ f (s, a′)] ≈ 0.88× 3 + 0.12× 1 = 2.76.

We can just compute the gradient estimate18, 18 Note that this is an estimate because
we are not taking expectation over state

∇̃θ J = Ea∼πθ(a|s) [∇θ log πθ(a|s)Qπθ (s, a)]

= πθ(a0|s)∇θ log πθ(a0|s)Qπθ (s, a0)

+ πθ(a1|s)∇θ log πθ(a1|s)Qπθ (s, a1)

≈ 0.88× (3− 2.76)× 1 + 0.12× (1− 2.76)× 100

≈ −20.79

Thus the policy gradient algorithm tells us to decrease the value of θ since
the higher feature value seems to result in lower future reward. This makes
the probability of choosing a1 at s higher than the previous iteration.

11.9 Highly Correlated Features

Gradient ascent/descent methods depend greatly on the parameterization of
the policy. To see this, consider the two parameterizations of Tetris.

Parameterization 1: f1 = # of Holes after the placement, f2 = Height after
the placement. We use θ to denote the parameter for this parameterization.

Parameterization 2: g1 = . . . = g100 = # of Holes after the placement,
g101 = Height after the placement. We use φ to denote the parameter for this
parameterization

Then, for Parameterization 1, we have,

θ> f (x, a) = θ1 × # of Holes(x, a) + θ2 ×Height(x, a).

While for Parameterization 2, we have,

φ>g =

(
100

∑
i=1

φi

)
× # of Holes(x, a) + φ101 ×Height(x, a).
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When we take the policy gradient, we have,

∇θi J = Ep(ξ|θ)

[
T−1

∑
t=0

(
fi(s, a)− Eπθ(a′ |s)[ fi(s, a′)]

)
Qπθ (st, at)

]

∇φi J = Ep(ξ|φ)

[
T−1

∑
t=0

(
gi(s, a)− Eπφ(a′ |s)[gi(s, a′)]

)
Qπφ (st, at)

]

Hence, we have ∇φ1 J = . . . = ∇φ100 J = ∇θ1 J. The policy gradient
algorithm takes a 100 times larger step for the actual weight corresponding to
the number of holes using Parametrization 2 than in Parametrization 1!

Gradient ascent (or steepest ascent) poses the problem of finding max∆θ J(θ +
∆θ) such that δθ is small. Gradient ascent measures “small” as the l2 norm
‖∆θ‖2 =

√
∑i(∆θi)2 ≤ ε. However this version of measuring "small" de-

pends on the parameterization of our policy. Ideally, we want the descent
to measure “small” based on changes in our policy and not depend on the
parameterization of the policy. We will address this problem in the next
lecture.
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11.10 Natural Policy Gradient

In the general formulation of steepest descent, as given by Eq. (11.10.1), there
are many size metrics that can be utilized.

max∆θ J(θ + ∆θ) s.t. ‖∆θ‖ ≤ ε (11.10.1)

The gradient descent algorithm comes about when we choose the metric ‖ · ‖
to be the l2 norm over the parameters (

√
∆θ>∆θ). In policy gradient methods

such as REINFORCE, this definition of the metric can cause the algorithm
to fail, if utilizing highly correlated features. This is due to the fact that the
l2 norm defines a “small” change in the gradient direction as depending on
the cumulative sum in parameter change, which may have varying degrees
of correlation with actual policy change. Instead, we would like to define
the size metric such that the notion of “small” encompasses changes in the
parameterized policy, not simply the changes in the parameters themselves.
This leads to two questions.

Q1) What does steepest descent look like given other metrics?

Q2) What metric captures the fact that we would like our metric to be tied
to the difference between the πθ(a|s) and πθ+∆θ(a|s), and not just θ and
θ + ∆θ?

Q1 – What does steepest descent look like under other metrics?

For small changes in the parameters, we can think of the metric as some
quadratic function of the parameters, as evidenced by the Taylor expansion.
The steepest descent optimization problem then becomes

max∆θ J(θ + ∆θ) s.t. ∆θ>G(θ)∆θ ≤ ε (11.10.2)

where G(θ) defines the specific metric. In general, G is a distance metric
and thus is symmetric positive semi-definite19. This matrix defines the no- 19 Being pedantic, it is actually a

pseudo-metric if it has nontrivial
nullspace

tion of distance in the parameter space locally around θ and, in some cases,
can be constant; if this is true, the metric is referred to as flat. Intuitively, a
flat metric entails that distance is measured the same everywhere in the pa-
rameter space. While a flat metric can be helpful, in the general case it will
not accurately capture the true notion of distance on the parameter manifold.

However, we don’t always want to use flat metrics because it does not
always precisely reflect what does “small” means in our particular situations.
For example, one change of parameters ∆θ at θ1 can result in a very minor
change of our policy, while the same ∆θ can result in a large change at θ2. We
want our metric G(θ) to reflect that.

We can solve this new optimization problem (Eq. (11.10.2)) for the pa-
rameters using the technique of Lagrange multipliers. This converts the
constrained optimization problem (11.10.2) to unconstrained optimization
problem with respect to the Lagrangian of the system,

max∆θ L(∆θ, λ) = J(θ + ∆θ)− λ
[
∆θ>G(θ)∆θ − ε

]
, (11.10.3)

where λ ≥ 0 is the Lagrange multiplier.
The theory says that there exists a choice of λ ≥ 0 such that the constraint

optimization problem (11.10.2) and the unconstrained optimization problem
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(11.10.3) has the same solution. To begin with, we could use only the direc-
tion and simple take λ to be a fixed scalar and solve for ∆θ. However, it’s
been demonstrated in practice that parameterizing in terms of ε is actually a
good way to control step-size. Note that this is straightforward to compute
since we can simply normalize δtheta to ε norm in the G metric (that is, it’s
easy to explicitly compute the correct lagrange multiplier)! 20 20 This is the dominant benefit of the

“TRPO” method over naive implemen-
tations of the natural gradient.

Because we are only considering small steps in ∆θ, we can approximate
(11.10.3) by using the first-order Taylor expansion of J:

L(∆θ, λ) ≈ J(θ) + ∆θ>∇θ J − λ
[
∆θ>G(θ)∆θ − ε

] .
= L̃λ(∆θ). (11.10.4)

Here we use the notation L̃λ(∆θ) to emphasize that we are taking λ as a
constant and hence L̃λ is a function of ∆θ.

Note that the approximated Lagrangian L̃λ is quadratic in ∆θ. To find
the solution, we can simply take the partial derivative of the approximated
Lagrangian L̃λ with respect to the change in parameters and set it to zero:

∂L̃λ

∂∆θ
= ∇θ J − 2 λ G(θ)∆θ = 0. (11.10.5)

If G(θ) is nonsingular, the solution to the above equation is thus:

∆θ =
1

2 λ
G−1(θ)∇θ J. (11.10.6)

Intuitively, we are taking the gradient and multiplying it by the inverse
of the metric that defines what it means to be large, and then taking a step
in that direction. However, it may still be the case that G(θ) is singular, or
very close to singular, due to two features being very highly correlated. For
example, if we are using two features that are exactly the same, the metric
should look something like

G(θ) =

[
1 1
1 1

]
.

In this case, if we make change ∆θ = [∆θ1 ∆θ2]
> to the parameters, the

size of this change measured by metric G(θ) is thus,

∆θ>G(θ)∆θ =
[
∆θ1 ∆θ2

] [1 1
1 1

] [
∆θ1
∆θ2

]
= ∆θ2

1 + 2∆θ1∆θ2 + ∆θ2
2

= (∆θ1 + ∆θ2)
2

This means that changes in any of the features, or any combination of
the features should be the same if they add up to be the same because they
effectively act on the same feature. Because this matrix is singular, there
exists a space in which we can move, and it will not change the policy at all
(the nullspace of G(θ)). For example, we can add δ to the first parameter
and subtract the second by δ, and the policy is still the same. In this case,
the most natural thing to do is use the pseudo-inverse, denoted as G†(θ), in
place of the inverse, which means that we not trying to do anything in the
nullspace, only the space in which we can actually affect things.
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Q2 – What metric do we want to use for policy gradients?

Despite now knowing how to change and solve the optimization problem for
different metrics, we are still left with the question of what the metric should
be. It turns out that there is a canonical answer for probability distributions,
given by Chentsov’s theorem. This theorem effectively says that there is a
unique metric such that distance is invariant to a class of changes to the
problem, such as label switching, for parametric family of distributions; this
metric is known as the Fisher Information Metric (Eq. 11.10.7).

G(θ) = Epθ

[
∇θ log(pθ)∇θ log(pθ)

>
]

(11.10.7)

Another way to come to this same result is to consider the Kullback–
Leibler divergence, or K-L divergence, of two probability distributions. Given
two probability distributions p and q,

KL(p‖q) = ∑
x∈X

p(x) log
(

p(x)
q(x)

)
. (11.10.8)

It turns out that the change in parameters measured by the Fisher Infor-
mation Metric is exactly the second order approximation of the K-L diver-
gence of the probability distributions before and after the change,

KL(pθ+∆θ‖pθ) ≈ ∆θ>G(θ)∆θ,

KL(pθ‖pθ+∆θ) ≈ ∆θ>G(θ)∆θ.
(11.10.9)

In general, the second-order approximation of “obvious” metrics on
probability distributions will result in the Fisher Information Metric.

For the specific problem of policy optimization, we take the Fisher Infor-
mation Metric on trajectories as our metric (Eq. 11.10.10). This is because we
want to essentially measure the distance between trajectories (distributions of
states) given changes in parameters.

G(θ) = Edπθ (s),πθ(a|s)
[
∇θ log πθ(a|s)∇θ log πθ(a|s)>

]
, (11.10.10)

Recall that dπθ (s) is the distribution of states, or the fraction of time spent in
states, under policy πθ .

In practice, G(θ) can be estimated as a running average of the states
experienced (Eq, 11.10.11), and its inclusion makes an enormous difference in
the success of algorithms such as REINFORCE. 21 21 J. A. Bagnell and J. Schneider. Covari-

ant policy search. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003G̃(θ) =

1
N

N

∑
i=1

[
∇θ log πθ(ai|si)∇θ log πθ(ai|si)

>
]

(11.10.11)

Intuitively, from a Machine Learning perspective, this algorithm is attempt-
ing to move in the direction that improves the performance the most, subject
to changing the distribution of input examples as little as possible. This is
also very similar to whitening of data, a natural normalization technique in
Machine Learning.

In the general case, where we are just doing steepest descent with a dis-
tance metric, the algorithm is referred to as the covariant gradient method.
In the special case shown above when you are measuring is distance between
probability distributions, the algorithm is known as the natural gradient
method.
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Then, we can combine this estimated policy gradient with the natural
gradient method, which gives us the update rule,

∆θ =
1

2λ
G̃−1(θ) ∇̃θ J. (11.10.12)

This is known as the Natural Policy Gradient method. Note that Eq. (11.10.12)
requires inverting the estimated Fisher information matrix, which can be
computationally expensive when the number of parameters is large. One so-
lution is to solve for Eq. (11.10.12) through iterative methods, e.g., Conjugate
Gradient method, and terminate early. This in practice gives us reasonably
good estimates of the natural policy gradient.

11.11 Conservative Policy Iteration

REINFORCE is essentially like a soft policy iteration, trying to change the
probability of actions so that they are correlated with things that have high
Q values. However, REINFORCE does not suffer from the disadvantages of
policy iteration, because it makes small changes.

We can modify approximate policy iteration to avoid the problems caused
by making big changes at each time step. We can make the policy iteration
stochastic, by choosing to follow the old policy with probability α, and tak-
ing action argmaxa Q̃(s, a) with probability 1− α. This algorithm, known as
conservative policy iteration, essentially makes a small change to the probabil-
ity distribution over trajectories, but by choosing actions to go the steepest
direction uphill.

11.12 Related Reading

[1] McNamara, A., Treuille, A., Popović, Z. and Stam, J., Fluid control using the
adjoint method, ACM Transactions On Graphics (TOG) 2004.

[2] Krizhevsky, A., Sutskever, I. and Hinton, G.E., ImageNet Classification with
Deep Convolutional Neural Networks, NIPS 2012.

[3] Le, Quoc V, Building high-level features using large scale unsupervised learning,
Acoustics, Speech and Signal Processing (ICASSP), 2013.

[4] Bagnell, J.A. and Schneider, J. Covariant policy search, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2003.



12
Iterative Learning Control

(This lecture is related to the paper Using Inaccurate Models in Reinforce-
ment Learning [1]. Reading the paper first is helpful in understanding the
material).

In the previous lectures, we have been looking into using policy gradi-
ent methods to find a good policy. The main advantage of policy gradient
methods is that they require us to know very little about the problem we are
solving – we don’t need to know the transition model, and we don’t need
to know the reward function either. All we need to do is collect a number
of roll-out trajectories and estimate the policy gradient based on that. As a
result of that, however, policy gradient methods have their natural limitation
that they generally require a large number of trajectories to work reasonably
well and they sometimes suffer from high variance in their gradient esti-
mates.

In this lecture, we take a different path by assuming that we know some-
thing about the particular problem we are solving. In particular, we assume
that we have a possibly inaccurate but hopefully helpful model of the system
and we know the reward function. We will see how we can approach the
reinforcement learning problem differently with this additional knowledge.

12.1 Model-based Reinforcement Learning

One straightforward way to solve this problem is to find an optimal policy
with respect to the (possibly inaccurate) model that we already have. This
idea lays the foundation of model-based reinforcement learning and optimal
control. In fact, we have seen an example of model-based reinforcement
learning techniques earlier in this class – LQR. It solves for the optimal policy
for a linear model and a quadratic reward function – although any practical
systems are hardly truly linear.

Given a (possibly time-varying) deterministic model f̂t : S×A → S and a
reward function r : S×A→ R, there is a slightly more general way to find a
good policy: solve for the policy gradient through back-propagation1. 1 Or the adjoint method if you are an

optimal controls person.Assume that we parameterize our policy πθ with parameter θ. Then, we
can represent the model-based reinforcement learning as a block diagram:

Note that we are using ŝt, ât and Ĵ here because they are not the actual
state, action and total reward we would get from running the actual system,
rather, they are just what we get from simulating through our approximated
model f̂t. Note, however, that s0 is not approximated because we assume that
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Figure 12.1.1: The block di-
agram representation of a
model-based RL problem using
an approximated model.

we start from a fixed state.
Recall from the earlier lecture that we can optimize the policy through

the “forward-propagation, back-propagation, gradient ascent” scheme. We
initialize our parameter at some arbitrary θ(0). At i-th iteration, we do:

1. Forward-propagation: Forward simulate πθ(i) using the approximated model

f̂t and observe the simulated trajectory {s0, a(i)0 }, {ŝ
(i)
1 , â(i)1 }, · · · {ŝ

(i)
T , â(i)T }

along with the approximated total reward Ĵ.

2. Back-propagation: Compute the approximated policy gradient ∇θ Ĵ(θ)
along the trajectory {s0, a(i)0 }, {ŝ

(i)
1 , â(i)1 }, · · · {ŝ

(i)
T , â(i)T } using back-propagation.

3. Gradient-Ascent: Update the parameter θ(i+1) = θ(i) + α∇θ Ĵ(θ).

Note that the approximated policy gradient ∇θ Ĵ(θ) we used here is fun-
damentally different from the estimated policy gradient ∇̃θ J(θ) we used for
the policy gradient methods. Here we use ∇θ Ĵ(θ), which is the exact gradi-
ent of the approximated total reward function, while ∇̃θ J(θ) is the estimated
gradient for the exact total reward function.

12.2 Iterative Learning Control

A typical problem in model-based reinforcement learning is that no matter
how well you try to model the system dynamics, there are always unmod-
eled errors that can easily throw your controller off course. A concrete ex-
ample is given in [1], where the authors want to control an RC car to follow
some trajectory. It is shown that the carpet threading is enough to cause their
linearized system to drift away from the planned trajectory.

In contrast, it is against our human intuition that a super sophisticated
model is required to perform many tasks such as steering a car. A young
adult who only has a crude idea of how a car steers can learn to make good
turns after a few trials: if the turn is too wide, steer more next time; if the
turn is too tight, steer less next time. This idea is also illustrate in the target
example in Fig 12.2.1.

Thus the key idea of Iterative Learning Control is (as the authors state):
“. . . to use a real world trial to evaluate a policy but then use the simulator
(or model) to estimate the derivative of the evaluation with respect to the
policy parameters.” In other words, we can use the actual system to do forward
propagation and then use our crude model for back propagation.
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(a) Initial shot is off (b) Aim at E2 instead of E1 (c) Aim at E3 and hit the bull’s eye

Figure 12.2.1: The target exam-
ple: (a) Initially we aim at the
bull’s eye(E1) but due to wind
or miscalibrated sight we end
up at x1. (b) Instead of aiming
at E1 which will end up at x1,
we aim at E2 which hopefully
will end up at E1. (c) Continue
updating the offset until we hit
the bull’s eye.

The Algorithm

Consider an approximated MDP problem (approximated in a sense that the
model isn’t very accurate but still informative) (S, A, f̂t, s0, r), where S is
the set of all possible states, A is the set of all actions, f̂t : S ×A → S is
the (possibly time-varying) deterministic approximated transition model,
s0 is the initial state and r : S → R is the reward function2. Assume both 2 Note that here that we assume that we

know the true reward function. Note
also that the reward is only defined on
states in this paper, but one can also
define it as a function of both states and
actions.

the system and the policy are deterministic and the policy is parameterized
by θ. We initialize our parameter at θ(0), the solution to the model-based
reinforcement learning problem we saw in the previous part. Then the i-th
iteration of the policy gradient proceeds as follows:

1. Execute the current policy πθ(i) on the real system and observe the actual

trajectory {s0, a(i)0 }, {s
(i)
1 , a(i)1 }, · · · {s

(i)
T , a(i)T }.

2. Augment the model by adding a (time-dependent) bias term to the origi-

nal model at every time step t: f̂ (i+1)
t (s, a) = f̂t(s, a)+

(
s(i)t+1 − f̂t(s

(i)
t , a(i)t )

)
.

3. Compute policy gradient ∇θ J(θ) using back-propagation with the up-
dated model and then update the parameter θ(i+1) = θ(i) + α∇θ J(θ).

In each iteration i, adding the time-dependent bias terms corrects the old
model so that if we re-run it with πθ(i) and f̂ (i+1)(s, a) we would get the exact

same state-action sequence {s0, a(i)0 }, {s
(i)
1 , a(i)1 }, · · · {s

(i)
T , a(i)T }.

(a) The original model f̂t. (b) The augmented model f̂ (t+1)
t .

Figure 12.2.2: At each itera-
tion, we augment the model
by adding a (time-dependent)
bias term to the original model
so that we would get the same
trajectory.

Therefore when updating the parameters θ in step 3, the correct trajectory
is used for computing the policy gradient. In most nonlinear control systems,
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this means using the actual trajectory for the linearization points though
the derivatives are computed using the old model (bias terms do not affect
derivatives) at these correct trajectory points.

12.3 The Theory

Once again we assume the system is deterministic and assume our policy is
parameterized by θ. Define the following function st = ht(s0, θ):

h1(s0, θ) = s1 = f0(s0, πθ(s0)) (12.3.1)

ht(s0, θ) = ft−1(st−1, πθ(st−1)) (12.3.2)

= ft−1(ht−1(s0, θ), πθ(ht−1(s0, θ))) (12.3.3)

In other words, ht(s0, θ) is the real world state at time t if we start at s0 and
follow the policy πθ . Similarly we can define ŝt = ĥt(s0, θ) which is the state
at time t using the approximated model and following πθ .

Let s0, s1, · · · sT be the real world state sequence obtained when executing
the policy πθ . Then the true policy gradient is given by:

∇θ J(θ) =
T

∑
t=0
∇st r(st)

dht
dθ

∣∣∣
s0,s1,···sT−1

(12.3.4)

Note here that the derivatives dht
dθ are total derivatives since ht is depen-

dent on θ through all previous time steps t′ = 0, . . . , t − 1. The chain rule
(back-propagation) is applied to every term in dht

dθ by the definition of Eq.
12.3.3.

Similarly we can define the approximated policy gradient as follows:

∇θ Ĵ(θ) =
T

∑
t=0
∇ŝt r(ŝt)

dĥt
dθ

∣∣∣
s0,ŝ1,···ŝT−1

(12.3.5)

Two sources of error make Eq. 12.3.5 differ from the the true policy gradi-
ent in Eq. 12.3.4:

1. The derivative in dĥt
dθ is based on an inaccurate model.

2. The derivatives in both ∇ŝt r(ŝt) and dĥt
dθ are evaluated along the wrong

trajectory.

What ILC does is that although we cannot deal with the first source of
error, we can at least run the system to get the actual trajectory instead of
using the wrong one predicted by our approximate model. The resulting
gradient is thus:

∇θ Ĵ(θ) =
T

∑
t=0
∇st r(st)

dĥt
dθ

∣∣∣
s0,s1,···sT−1

(12.3.6)

Brief Proof of Convergence and Optimality

It has been proved that if the model isn’t too bad and the problem is well-
behaved enough3 then following the gradient will converge to a neighbor- 3 Certain boundedness and smoothness

conditions hold for the true MDP.hood of a local optimum. More formally:∥∥∥∥∥ d ft
ds
− d f̂t

ds

∥∥∥∥∥
2

≤ ε and

∥∥∥∥∥ d ft
da
− d f̂t

da

∥∥∥∥∥
2

≤ ε⇒
∥∥∇θ Ĵ −∇θ J

∥∥
2 ≤ Kε, (12.3.7)
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where K is a constant related to the properties of the problem, such as the
dimensionality of the problem, upper bound for reward, horizon of the
problem, etc.

Further, if an exact line search is done for each gradient ascent step (every
gradient ascent step updates the parameter to the best parameter along the
gradient direction), the algorithm converges to a region of local optimality,

‖∇θ J‖2 ≤
√

2Kε. (12.3.8)

The above theorem guarantees that ILC converges to a region of local
optimality. On the other hand, in practice when the policy is close the true
optimal policy, it tends to oscillate without actually converging to the opti-
mum.

12.4 Related Reading

[1] Abbeel, P., Quigley, M. and Ng, A.Y., Using inaccurate models in reinforce-
ment learning., ICML 2006.

,





13
Response Surface Methods

In this lecture we introduce Response Surface Methods (RSM) for policy
optimization in reinforcement learning (RL). The problem setting in this
lecture makes two important assumptions:

Parametric policy the policy π : S → A depends on a parameter vector
θ ∈ Rd.

Episodic learning In this setting learning proceeds by interleaving two stages
in a loop:

1. Batch simulation (or execution) of one or more “episodes”1 under the 1 Previously described as “rollouts” in
this course.current policy.

2. Adjustment of the policy (in this case, of the current policy’s param-
eters) based on some aggregate performance metric from the simula-
tions (e.g. total sum of rewards).

Episodic learning contrasts with methods that continuously learn through-
out the simulation.

See table 13.1 for an example of episodes, policies and rewards in three
problem domains.

Domain

Tetris Helicopter

Episode Game Simulate for 1 minute
Policy Board→ Move (x, y, z, ẋ, ẏ, ż)→ (cycle, throttle, collective)

Reward # of lines cleared Remain close to desired trajectory

Table 13.1: Examples of
episodes, policies and rewards
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13.1 Optimization with Response Surface Methods

RSM is a general purpose, “black box” optimization method for any function
f : X→ R. The outline of RSM is as follows:

1. Pick an initial point x1.

2. For t = 1, . . . , T

(a) Obtain response f (xt).

(b) Fit a “response surface” f̂ to all data points {(x1, f (x1)), . . . , (xt, f (xt))}.
(c) Use the response surface to choose a new xt+1.

Note that t here means iterations rather than steps in episodes.
Step (b) involves fitting a function f̂ and step (c) optimizes over the re-

sponse surface f̂ . These steps may be computationally expensive. Hence,
RSM is most useful when evaluating f is itself very costly compared to solv-
ing the surrogate problems in steps (b) and (c), which is often the case in
reinforcement learning for robotics. If evaluating f is cheap, then we may be
better off using one of black box methods covered earlier, such as the cross
entropy method.

13.2 Fitting the response surface: Gaussian Process Regression

In step (b) of the algorithm we fit a response surface f̂ , sometimes called
the surrogate function, to all our data points {(x1, f (x1)), . . . , (xt, f (xt))}.
Intuitively, f̂ is an approximation the real f , but much less expensive to
evaluate, and it will guide our search for the location of the optima in f .

Gaussian processes (GPs) are a commonly used model in response sur-
faces methods that maintain a nonparametric prior over functions. The
intuition behind the GP prior is to see functions as a point in a continu-
ous, “infinite-dimensional” space. The joint distribution for any finite set
of samples { f (x1), . . . , f (xt)} is Gaussian and defined by a mean function
µ : X→ R and a covariance function k : X×X→ R:(

f (x0), . . . , f (xt)
)> ∼ N (µ, Σ)

µ =
(
µ(x1), . . . , µ(xt)

)>
Σij = k(xi, xj) ∀ (i, j) ∈ [1, . . . , t]2

Without loss of generality, the mean function µ is assumed to be always 0.
This is the same as preprocessing the data as f ′(x) = f (x)− µ(x).

Conceptually, the kernel function is like an “infinite-dimensional” covari-
ance matrix where Σij = k(xi, xj) = cov

(
f (xi), f (xj)

)
. Therefore it must meet

the equivalent of the SPD condition:

1. k(xi, xj) = k(xj, xi), ∀ xi, xj

2. Any matrix K s.t. Kij = k(xi, xj), that is symmetric positive semi-definite.

While we do not go into further detail here, we should note that choosing
a suitable kernel function is very important for the performance of the GP
regression and by extension, the RSM. This is a model selection problem,
which falls outside the scope of this lecture.
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GP inference

Given a prior for f ∼ GP(µ, k) and a set of samples
(
(x1, f (x1)), . . . , (xt, f (xt))

)
,

we wish to compute a posterior over f (x∗) at any query x∗. We have
f (x∗)
f (x1)

...
f (xt)

 ∼ N



0
...
0

 ,


k(x∗, x∗) k(x∗, x1) . . . k(x∗, xt)

k(x1, x∗) k(x1, x1) . . . k(x1, xt)
...

...
. . .

...
k(xt, x∗) k(xt, x1) . . . k(xt, xt)




For notational convenience, let us define

K∗∗ = k(x∗, x∗)

Kx∗ =
[
k(x∗, x1), . . . , k(x∗, xt)

]>
Kxx =

[
k(xi, xj)

]N
i,j=1

Using the properties of the Normal distribution, it can be shown that the
posterior of f (x∗) is also a Gaussian:

f (x∗)| f (x1), . . . , f (xt) ∼ N
(
µt(x∗), σt(x∗)

)
(13.2.1)

µt(x∗)
.
= K>x∗K

−1
xx
[

f (x1), f (x1), . . . f (xt)
]> (13.2.2)

σt(x∗)
.
= K∗∗ − K>x∗K

−1
xx Kx∗ (13.2.3)

This gives us the posterior expected mean of f (x) at any point x in the
input space X. It also gives us a posterior variance for f (x), which we can
interpret as a measure of uncertainty about the value of f at the point. In
section 13.3 we will see how to use both in optimization.

Visualization

A good way to visualize a GP is to draw samples and plot them as func-
tions. For this one selects a set of t samples xi, i = 1, . . . , t, constructs the
corresponding covariance matrix with k, samples n-dimensional points from
the Gaussian with this covariance matrix, and plots them as functions. Fig-
ure 13.2.1 shows draws from two different GP priors.

Figure 13.2.1: Draws from
two different Gaussian
Process Priors. Both use a
squared exponential kernel
k(x, x′) = exp{−(|x− x′|2/l2)},
but with different characteristic
length-scale l. The left figure
has smaller l while the right
figure has larger l. The kernel is
graphically depicted by the red
dotted line.

The same procedure can be applied to the posterior function, but using
the posterior mean and covariance from eq. (13.2.1).

To learn more

This has been a very brief introduction to Gaussian Process regression. A
good place to learn more is [1].
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13.3 Choosing the next point to evaluate

For this section, we will switch notation to match the RL scenario:

• f → J

• x→ θ

J(θ) is the “true cost-to-go” function, which is unknown but what we’re
trying to optimize as function of θ, the parameter vector for the policy πθ . To
evaluate J(θ) means to perform one (or more) episodes of simulation using
the policy defined by θ.

Now, given all the samples
(
(θ1, J(θ1)), . . . (θt, J(θt))

)
observed so far and

and a GP prior, we can estimate the posterior J(θ) for any query θ. Let us
define

J(θ) ∼ N (µt(θ), σt(θ))

µt(θ)
.
= posterior mean for J(θ) according to eq. (13.2.2)

σt(θ)
.
= posterior variance of J(θ) according to eq. (13.2.3)

How do we choose the next point θt+1 to evaluate (step (c) in the RSM al-
gorithm outline)? Below we list some possible strategies, each with different
advantages and disadvantages.

Maximum of posterior mean

In this strategy, we simply use

θt+1 = argmax
θ

µt(θ)

To obtain the argmax we can use any optimization algorithm, such as gra-
dient descent, exhaustive search, Nelder-Mead, etc. (Note that this implies
we are performing a nonlinear optimization step for each iteration of RSM,
although on our estimated surrogate function, which is one of the reasons it
is relatively slow).

This is the most “greedy” strategy, maximizing exploitation over explo-
ration. As such it is more prone to converge in local optima. It may even
choose θt+1 = θt, in which case we will get stuck. Moreover, it ignores
the uncertainty of the estimate. Nonetheless, it may be a good choice if we
believe θt is close to a good optima.

Figure 13.3.1 shows this strategy in action. The first panel shows the true
objective function J(θ), in black, and three evaluations (black dots). The rest
are seven iterations of the RSM algorithm, ordered from left to right and
top to bottom. The solid red line is the expected posterior mean of J(θ),
µt(θ). The dotted red lines are a confidence interval for J(θ), reflecting the
magnitude of σt(θ). The blue line is the normalized value of the function
we maximize to obtain θt+1, in this case µt. As we can see, in this case the
strategy does nothing of interest, as the θt+1 (the small black dot) equals
one of the previously sampled points, and no further exploration occurs; the
maximum is not found.
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Figure 13.3.1: The “maximum
of posterior mean” strategy in
action. See text for explanation.

Maximum of posterior variance

In this strategy, we use

θt+1 = argmax
θ

σt(θ)

That is, θt+1 is placed where our uncertainty about J(θ) is greatest, regard-
less of the expected value. This is the “opposite” of the last strategy in the
exploitation-exploration spectrum.

Figure 13.3.2 shows this strategy. We can see this strategy is good for
exploring over various different locations, but fails to find the function maxi-
mum.

Figure 13.3.2: The “maximum
of posterior variance” strategy
in action. See text for explana-
tion.

Maximum upper confidence bound

In practice, we want to balance exploitation and exploration. Therefore, a
sensible strategy is to choose

θt+1 = argmax
θ

µt(θ) + β σt(θ)

where β is a parameter regulating the exploitation-exploration tradeoff.
µt(θ) + β σt(θ) can be interpreted as an “upper confidence bound” for µt(θ).
This strategy works well, but has the disadvantage of requiring a tuning
parameter β.

Maximum probability of improvement

What we really want is to improve Jmax, the best value found so far.
Let us define an “improvement” function

I(θ) = max
(

J(θ)− Jmax, 0
)
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Since I(·) depends on J(θ), it is also a random variable. One strategy is to
maximize the probability of improvement:

θt+1 = argmax
θ

Pr
(

I(θ) > 0
)

or alternatively,

θt+1 = argmax
θ

∫ ∞

Jmax

N
(
y|µt(θ), σt(θ)

)
dy

The main problem with this strategy is that if we ever choose θt+1 = θt,
we we will get stuck there. To avoid this we can use a modified improvement
function

I(θt) = max
(

J(θt)− (Jmax + β), 0
)

But again, we have a tuning parameter β.

Maximum expected improvement

One problem with the last strategy is that we are only considering the prob-
ability of improvement, not the magnitude of the improvement. We can fix
this by using the expected improvement:

θt+1 = argmax
θ

E [I(θ)]

= argmax
θ

∫ ∞

Jmax

N
(
y|µt(θ), σt(θ)

)(
y− Jmax

)
dy

This has no tuning parameter and is one of the most popular RSM meth-
ods. One disadvantage is that it sometime tends to explore too much. Fig-
ure 13.3.3 shows this strategy in action. As we can see it has a good balance
of exploration and exploitation, and finds the maximum.

Figure 13.3.3: The “maximum
of expected improvement”
strategy in action. See text for
explanation.

Miscellaneous

• For any strategy, at each step we can sample a random point with some
probability ε. This encourages exploration.

• How do we take into account the stochasticity of J(θ) itself? Often it is
simply ignored, which conflates it with our uncertainty about the value
J(θ). Alternatively, it can be separately modelled as “process noise”,
which may be heteroscedastic (it varies with θ).

• We may take Jmax to be stochastic. In this case the expected improvement
requires a joint expectation calculation. Most people simply use the mean
of the GP at the maximum point. Empirically it doesn’t seem to matter
too much.
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13.4 Related Reading

[1] Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian Processes
for Machine Learning. MIT Press, 2006. www.gausianprocess.org

www.gausianprocess.org
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